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Summary 

We designed a method to develop a suite of specialized cyber sensors that are optimized 
to detect cyber attack observables. We develop our sensors using scientific knowledge of 
characteristics of cyber signal (attack data) and noise (normal “norm” data). In our approach, we 
built models for attack norm characteristics. To detect characteristics, we used our norm model 
to filter out noise from mixed data and our attack model to detect a cyber signal. Our solution 
aims to reduce false alarm rates, increase detection rates and provide earlier detection with 
knowledge gained from our scientific investigation of attacks. 

The development phases of the attack-norm separation approach include classifying and 
profiling cyber attacks, analytical discovery of signal and noise characteristics, designing and 
testing sensor models, sensor fusion models, and finally an optimized suite of cyber sensors. We 
have created a number of sensors based on a subset of cyber attacks and tested them to show 
performance of attack detection and recognition. 
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1. Introduction 
 

A suite of specialized cyber sensors, that are optimized to detect cyber attack 
observables, is imperative because of the efficiency, accuracy, and adequacy problems 
encountered by existing intrusion detection systems that use event streams (raw activity data). As 
we see how physical sensor technologies (e.g., radar sensors, sound sensors, light sensors, etc.) 
have been developed for signal detection in the physical world, the development of sensors for 
cyber signal detection will need to rely on the scientific knowledge of characteristics of cyber 
signal (attack data) and noise (normal “norm” data) to achieve detection efficiency, accuracy and 
adequacy. However, characterization of cyber attack and normal data is far from fully 
established, and little scientific knowledge exists. We designed a method for building a sensor 
grid based on scientific knowledge of attack and normal data and developed an optimized suite 
of cyber sensors using: 

• An innovative combination of risk assessment, system modeling, and fault modeling 
theories that capture resource-process, activity-state-performance, and attack-threat-
mission interactions temporally, spatially, and functionally in cause-effect networks of 
attack profiles 

• Scientific discovery of cyber signal and noise characteristics 
• Quantitative and qualitative models for cyber attack detection and recognition based on 

signal processing, detection, and time series analysis theories, cu-score statistic test 
techniques, and other technologies, according to characteristics of cyber signal and noise 

• Sensor fusion models based on decision and fusion theories 
• Optimization of I&W observables/cyber sensors based on Operations Research theory 

The following sections in this report summarize our research. We start by describing 
existing intrusion detection systems and their shortcomings. We then introduce our attack-norm 
separation approach. Our approach involves a number of steps which we describe in the 
subsequent sections on attack classification and profiling, characteristics of cyber signal and 
noise, sensor and sensor fusion models, and optimized suite of cyber sensors. Following these 
sections, we present the results of our two subcontractors on this project: Symantec and AT&T. 
Finally, we conclude this report. 
 
2. A New Approach to Cyber Attack Detection & Recognition 
 

We first describe two existing approaches to intrusion detection: signature recognition 
and anomaly detection. We then present a new approach, called attack-norm separation, and 
compare it with the two existing approaches. (Note that in the earlier months of this project, we 
were calling our approach signal-noise separation. This caused some confusion and we changed 
it to attack-norm separation. Thus, where previous reports used the terms signal and noise, we 
use attack and norm in this report.) 
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2.1 Existing Intrusion Detection Techniques 
 

Two existing approaches to intrusion detection are signature recognition and anomaly 
detection. Most commercial intrusion detection systems, including anti-virus software, employ 
signature recognition to detect cyber attacks. In this approach, signature patterns of attacks are 
either manually captured by expert analysts or automatically discovered through mining 
computer and network activity data collected under attack and normal operating conditions [1,2]. 
Attack signatures are stored and used in an intrusion detection system to check against activities 
and files on computers or networks for the presence of a signature. If present, the system detects 
an attack. Since the signature patterns of novel attacks are often unknown, signature recognition 
is not effective against them. 

Anomaly detection considers any large deviation from normal system behavior as an 
indication of a possible attack [2,3]. Thus, it requires an established model of normal system 
behavior (norm profile), to monitor activities on computers and networks and measure deviations 
from the norm. A large deviation indicates a possible attack. We can establish a norm profile 
according to the system norm by design, or by learning from data of system behavior collected 
under normal operating conditions. Various norm profile modeling techniques have been 
investigated, including strings representing sequences of system calls, Statistical Process Control 
(SPC) charts, Markov chain models, data clusters, association rules and artificial neural networks 
[2,3]. An anomaly detection technique can detect a novel attack if it shows a large deviation from 
its norm profile. However, a novel attack may not deviate largely from the norm profile, yielding 
a miss or detection failure. Furthermore, the modeling technique used in an anomaly detection 
solution may not be powerful enough to cover all kinds of normal system behavior, especially 
that which is normal, but irregular. When such behavior occurs, the solution erroneously 
indicates a possible attack, yielding a false alarm. Too many false alarms burden system 
administrators, who must investigate them, rendering the anomaly detection approach 
impractical to some extent. Hence, in spite of its advantage in possibly detecting novel attacks, 
anomaly detection has not become popular in commercial intrusion detection systems. 

Essentially, both approaches employ data analysis combined with a model of system 
behavior to detect attacks. The two approaches differ in their underlying models. Signature 
recognition uses a model of “bad” system behavior under the attack condition, whereas anomaly 
detection uses a model of ''good'' system behavior under the normal operation condition. Attacks 
on computers and networks are detected when the observed behavior either correlates with 
known attack profiles or diverges from known normal profiles. Neither of the two approaches 
requires and enforces the use of both attack and normal behavior models in contrast to achieve 
detection accuracy. The mixture of attack and norm data extracted for intrusion detection 
weakens the distinctive characteristics of both, resulting in poor detection performance 
(including misses and false alarms). If we consider a data characteristic to be strong or weak, 
there are four combinations of characteristics in mixed data shown in Table 1. 
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Table 1: Characteristics of attack and norm data 

  Attack Characteristic 
  Weak Strong 

Weak weak norm, weak attack weak norm, strong attack Norm 
Characteristic Strong strong norm, weak attack strong norm, strong attack 

 
Existing techniques work well for only one combination: strong attack and weak norm 

characteristic. A signal detection model, incorporating characteristics of both signal and noise 
mixed together in monitored data, can more accurately detect a signal in noise than a model 
relying on only one element, and is more sensitive to low signal-to-noise ratios (where the signal 
is buried in a lot of noise) [4]. A low signal-to-noise ratio is often the case in cyber attack 
detection since there are usually many more normal activities than attacks on computer and 
network systems. 
 
2.2 Attack-Norm Separation Approach 
 

In our approach, we built models for cyber signal (attack) and noise (norm) 
characteristics. To detect characteristics, we used our norm model to filter out noise from mixed 
data and our attack model to detect a cyber signal. Table 2 illustrates how attack-norm separation 
differs from signature recognition and anomaly detection. 
 

Table 2. Comparing intrusion detection techniques 

 Anomaly 
Detection

Signature 
Recognition

Attack-
Norm 

Separation 
Detect deviation from normal 
(possible attack) 

X  X 

Identify known attack  X X 
 
 As shown in Table 2, our approach detects norm deviations, which could indicate a 
possible attack, and identifies the attack if it is known. For novel attacks, our solution draws on 
generalized information from profiles of known attacks to classify observed anomalies into 
possible attack categories. We aim to reduce false alarm rates, increase detection rates and 
provide earlier detection with knowledge gained from our scientific investigation of attacks. 

Unlike current solutions, which monitor only activity data, the attack-norm separation 
approach considers the true normal space, to contain activity, state and performance data, thus 
providing adequate coverage of the cause-effect propagation data space associated with normal 
user activities and attacks. Each sensor model calls for the monitoring and processing of only a 
small amount of specific data to provide certain characteristics of attack and norm activity. 
Hence, each model is efficient, accurate, and adequate in detecting a given attack signal in 
normal noise. This approach aims to raise the level of detection accuracy, reduce the amount of 
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monitored data, improve the relevance of monitored data to intrusion detection, and allow for 
easy protection of a small amount of specific data. 

Figure 1 shows the steps of our development process. First, we classified several cyber 
attacks and discovered their associated cause-effect networks to identify observable points for 
cyber attack detection. Next, we characterized observable points using signal processing, time 
series, and other models of signal detection. The first two steps form an iterative process. As we 
explored the characteristics discovered through analysis, we verified them with the attack 
profiles. This focused verification gave us a two-way validation of the expected observables 
from the profile, and observations made in the analysis. 
 

 

Figure 1. Method for developing an optimized suite of cyber sensors 
 

The third and forth steps in Figure 1 are to develop sensor and sensor fusion models, 
which fuse decision outcomes from different sensors for the same cyber signal and noise data 
into an integrated decision. We started by taking results from the first two steps and developing 
sensor models with collected simulation data (offline development). We then verify the models 
in real-time (online verification). This verification confirms that the sensors are working as 
expected. Finally, we developed an optimized suite of cyber sensors that uses the least number of 
sensors necessary to accurately detect and identify the attack profiles in our study. 

We expect that attack coverage for our attack-norm separation approach will expand with 
increasing knowledge of attack and norm characteristics, just as signal detection knowledge and 
technologies in the physical world evolved. A comprehensive knowledge of cyber attack and 
norm characteristics establishes a solid, scientific foundation of cyber attack detection to help 
overcome the shortcomings of existing empirical techniques. 
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3. Attack Classification and Profiling 
 

The first step in building sensors for our sensor grid is attack classification and profiling. 
In order to discover characteristics of attacks, we need to first have a better understanding of the 
attacks considered in our study. We have looked at over 100 attacks, and classified a number of 
them using the scheme presented in this section. 

Rigorously cataloguing computer and network attacks involves two steps: classification 
and profiling. In attack classification, we organize attacks into a classification table and tree 
based on the nature of the attack. In attack profiling, we outline the steps involved in the setup 
and execution of an attack. With these tools, we can identify the pre-attack phases of an attack 
and the observable points that make up the attack’s signature. Identifying the observable points 
in an attack enables the design of a sensor model to detect it. Additionally, the sensor model can 
be designed to specifically identify an attack in its pre-attack phase, thereby allowing room for 
measures to counter the attack before the strike. This is much more desirable than detecting an 
attack after it has begun to propagate and cause damage. 

In this section, we give background material for the design of our attack classification 
tree and profiling method. The following subsections present attack classification and attack 
profiling. Finally, we conclude this section. 
 
3.1 Background 
 

We categorize attacks using three theories to provide a scientific foundation: risk 
assessment, system modeling and fault modeling. 
 
3.1.1 Risk assessment theory 

 
Three factors contribute to any risk: asset, vulnerability, and threat [5,6]. We define each 

of these terms and use them in our attack classification scheme. 
For the risk of cyber attack, assets are what the defender needs to protect on computers 

and networks. Assets include information processing, storage and communication resources such 
as CPU and memory at the hardware level, and the operating system, data files, databases, 
application programs, and network programs at the software level. Each asset is assigned with an 
asset value to measure the relative importance of the asset in the defender’s missions. A mission 
model can be constructed to specify missions and their projection onto assets in the defender’s 
information infrastructure. The asset value can be derived from the projection of missions onto a 
given asset. Three attributes of an asset have security impact on the asset value: availability, 
integrity and confidentiality. The availability attribute of an asset describes whether or not users 
with access rights to the asset can access the asset and obtain service at any time when service is 
needed. The confidentiality attribute of an asset describes whether or not the content or operation 
of the asset is kept secret from unauthorized users. The integrity attribute of an asset describes 
whether or not the content or operation of the asset can be kept accurate without unauthorized 
alteration or deletion, and thus service from the asset can be trusted. A cyber attack that causes a 
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change from the desired level of the availability, confidentiality and integrity state of an asset 
results in a compromised asset value, and becomes a security problem.  

Vulnerability evaluates the security strength of an asset. An asset is vulnerable if there is 
an opportunity to cause the damage or loss of the asset value. An asset may have more than one 
vulnerability. A vulnerability value can be assigned to indicate the severity of asset damage or 
loss if the vulnerability is exploited in a malicious cyber attack. 

While assets are what we are protecting, threats are potential attacks that we are 
protecting from. A threat value can be assigned to indicate the likelihood or potential of the 
threat. The attacker’s threat profile can be established to characterize the attacker’s sources (e.g., 
nation states, terrorists, criminal elements, hackers, or corporate competitors, etc.), attack 
capabilities (e.g., resources, skills, tools, methods including passive, active, close-in, insider, and 
distribution, etc.), motivations (e.g., malicious versus non-malicious, intelligence gathering, theft 
of intellectual property, causing embarrassment, pride and proof of skills, etc.), status (e.g., 
outsider, insider, etc.), readiness (e.g., how much intelligence information about the target 
system the attacker has possessed), and so on. 

There is no risk if any one of the three contributing factors—asset, vulnerability, or 
threat—does not exist. An asset may have multiple vulnerabilities, each of which may be subject 
to multiple applicable threats. 
 
3.1.2 System modeling theory 
 

A system consists of two basic elements: resource and process [6,7]. A resource in the 
system, corresponding to an asset in risk assessment theory, provides service to a process 
requesting service from the resource. Multiple processes may request service from the resource 
at the same or different times. 

A process has input and output. Servicing a process changes the state of a resource. A 
change in the resource state in turn has impact on the output performance of the process. For 
information security, there are three attributes of resource state: availability, confidentiality, and 
integrity as defined in risk assessment theory, and there are three attributes of output 
performance: timeliness, precision, and accuracy. Timeliness measures how long it takes to 
produce the output. Precision measures how much output is produced, related to the quantity of 
the output. Accuracy measures the correctness of the output, related to the quality of the output. 
The availability, confidentiality, and integrity attributes of the resource state affect the 
timeliness, precision, and accuracy attributes of output performance respectively. For example, a 
CPU is a resource or an information processing asset. When a CPU services a process, the 
availability attribute of the CPU state changes because less CPU time becomes available. The 
availability state of the CPU in turn affects the timeliness attribute of the output performance for 
the process. Activities in the system include user activities to initiate processes and receive 
service and operations of resources to provide service. User activities to initiate processes change 
the state of resources, and changes in the resource state in turn have impact on the output 
performance of processes. Hence, in a system consisting of resources and processes, there are 
resource-process interactions and activity-state-performance interactions. 
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3.1.3 Fault modeling theory 
 

A fault has a propagation effect in a system, involving activity-state-performance 
interactions as discussed in system modeling theory [7]. Hence, a fault can be modeled in a 
cause-effect chain or network of activity, state change, and performance impact, all occurring in 
the system during the fault effect propagation. For information security, the attacker’s activities 
cause the state change of resources on computers and networks, which in turn produces 
performance impact (e.g., performance error of processes or degraded quality of service provided 
by resources to processes), as shown in Figure 2. 
 

 
Activity 1: the attacker responds to a host’s who-has 
request for a given IP address with a wrong MAC 
address 

Activity 2: data packets travel on the network 
carrying the attacker’s response with the wrong 
MAC address 

Activity 3: the host receives the response with the 
wrong MAC address 

Activity 4: the host updates the ARP table with the 
wrong MAC address for the given IP address 
State Change 1: the integrity state of the resource, 
the ARP table, is compromised 

Activity 5: the host uses the wrong MAC address to 
connect to the given IP address 

Activity 6: Internet generates an error message for 
failure to connect, and data packets travel on the 
network carrying the error message 

Activity 7: the host receives the error message 
Performance Impact 1: failure to connect 

 
Figure 2. The cause-effect chain of an ARP poison attack. 
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3.1.4 Intersection of theories 
 

Although the above theories have been applied separately for various aspects of 
information security and assurance, they have never been combined to predict cyber attacks. We 
propose to innovatively combine the above theories in our proposed solution for the sensor grid 
(see Figure 3). 
 

 

Figure 3. The proposed solution for the sensor grid. 
 
Our proposed solution for the sensor grid will include threat profiles, attack profiles, 

observable points and characteristics of cyber signal and noise at those points. These concepts 
are described below. 

A threat profile captures the threat factor in risk assessment theory. Threat profiles 
represent various types of cyber threats. Such profiles may consist of information that describes 
the nature of a threat, such as an attacker’s source, capabilities, motivation, status, readiness, etc. 

Attack profiles exist for each threat profile. An attack profile takes the form of a cause-
effect chain or network of activities, state changes, and performance impacts with resource-
process interactions and activity-state-performance interactions throughout the course of an 
attack scenario, as the one shown in Figure 2, but also enlarged with elements from a threat 
profile to present a comprehensive picture of an attack scenario under a threat profile. Under 
each threat profile, a number of attack scenarios may be applicable, and therefore there will a 

 Threat Profile 1 Threat Profile I 

Attack Profile i1 Attack Profile in Attack Profile iN 

Threat Profile i 

Observable Point 1 Observable Point k Observable Point K 

Characteristics of 
Cyber Signal and Noise 

Characteristics of 
Cyber Signal and Noise

Characteristics of 
Cyber Signal and Noise

I&W Observables/ 
Cyber Sensors &  

A Sensor Fusion Model 

I&W Observables/ 
Cyber Sensors &  

A Sensor Fusion Model

I&W Observables/ 
Cyber Sensors &  

A Sensor Fusion Model

An Optimized Suite of I&W Observables/Cyber Sensors 

Other Threat Profiles 

Other Attack Profiles 

Other Observation Points

Other Characteristics of 
Cyber Signal and Noise 

Other I&W Observables/ 
Cyber Sensors &  

Sensor Fusion Models 
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number of attack profiles, one for each attack scenario. The same attack profile may be used 
under different threat profiles.  

When we consider an attack profile under a threat profile, elements of the threat profile 
will be added to the cause-effect or network of the attack profile. For example, elements about 
the nature of the attack (i.e. attacker capabilities) in the threat profile may be added to the cause-
effect chain or network of the attack profile as pre-conditions for certain activities, state changes, 
or performance impacts along the cause-effect chain or network. After being enlarged with 
elements of the threat profile, the attack profile will become a cause-effect network if it is a 
cause-effect chain before the enlargement. 

Therefore, the cause-effect network of the attack profile, enlarged with elements of a 
threat profile, will combine the asset, vulnerability and threat factors in risk assessment theory, 
and combine risk assessment theory with system modeling and fault modeling theories. 
Incorporating elements of the threat profile into the cause-effect network of the attack profile 
will improve detection efficiency and accuracy, and increase the warning time for early cyber 
I&W.  

Nodes in the cause-effect network of an attack profile will represent the observable 
points, such as activities (or events), state changes, and performance impacts. Directed links 
between nodes will represent cause-effect relationships between nodes. Observable points along 
the cause-effect network of each attack profile. Each node in the cause-effect network of each 
attack profile will become a candidate observable point. Only those observable points that have 
cyber sensors from an optimized suite of cyber sensors (discussed below) will be selected to be 
observable points that will be monitored by cyber sensors in the sensor grid. 

Characteristics of cyber signal and noise at each observable point that will be important 
in cyber signal detection, including: 

a) Statistical characteristics, such as mean, variance, probability distribution, 
covariance, auto-correlation, dependency, and stationarity. 

b) Characteristics of spatial and temporal correlations, such as frequency band, shift, 
trend (i.e., cyclic and seasonal), drift (i.e., upward and downward), intermittent 
spike or bump, and change (step change, exponential change, slope change, sine 
wave, square wave, etc.), characteristic changes in dynamic state, phase 
synchronization, etc. 

Using the concepts outlined in this section, we create an attack classification scheme to 
capture the threat profile along with aspects of the attack profile in a table and tree format to 
begin cataloguing computer and network attacks. 
 
3.2 Attack Classification 
 

We develop a system fault risk (SFR) framework for cyber attack classification based on 
the theories described in the previous section. Because many attacks have different forms, we 
must understand the similarities and differences between attacks. Our classification framework 
simplifies the task of comparing attacks. This framework allows us to group attacks to develop 
intrusion detection techniques based on group characteristics. In this section we describe the SFR 
classification framework for classifying cyber attacks. The SFR framework incorporates a cause-
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effect chain into its design. To build the classification structure, we first consider vulnerabilities 
in computer and network systems. 

Vulnerabilities can be created in otherwise secure systems by improper configuration of a 
system or the installed software. For example, certain systems and software packages ship with a 
default account and password. A common configuration error is forgetting to change or remove 
that default account, and this leaves a wide-open back door for attackers. Implementation errors 
can introduce vulnerabilities into systems that have perfectly secure implementation and design. 
Buffer overflow vulnerabilities caused by improper bounds checking on variables is a common 
example of this error. Specifications may contain weaknesses by design or error, and these 
weaknesses cannot be corrected later in design or implementation. For example, consider the 
TCP Reset attack where the attacker listens for connections to a victim computer. When a client 
attempts to connect to the victim, the attacker sees it and sends a TCP reset packet to the victim 
that is spoofed to appear to have come from the client. In this way the client uses the TCP 
specification to tear down any attempted connections to the victim. Human gullibility is a 
constant source of vulnerability as attackers routinely attempt to fool people into revealing 
critical information such as usernames, passwords, and credit card numbers. 

Using the SFR framework, and taking into account vulnerabilities present in computer 
and network systems, we build an attack classification table in the next section. For another 
perspective, we also create attack classification trees in the following section. 
 
3.2.1 Classification Tables 
 

SFR and vulnerability analyses combined with in depth conceptual analysis of individual 
attacks produce a collection of factors involved in cyber-attacks. The factors revealed are sorted 
into the categories: objective, propagation, attack origin, action, vulnerability, asset, state effects 
and performance effects. These categories make up an incident. The incident encompasses the 
two subclasses: threat and attack, and a cause-effect chain. This attack classification scheme is 
shown in Figure 4. 

 



 

 12

Figure 4. Framework of cyber attack classification 
 

We describe the purpose of each column shown in Figure 4 and outline the definitions of 
the elements present in each column: 
• Objective: This column is a combined description of technical skills, resource levels, and 

potential threat sources (which implies intent). 
o Spying: This can occur at a government or corporate level. In either case, the 

perpetrator(s) are assumed to have high skills and potentially high levels of resources at 
their disposal. This type of attack is politically motivated and includes interests such as 
information theft and sowing disinformation. 

o Professional Crimes: Committed by perpetrator(s) whose objectives are financially based. 
This could be an individual or organization. Potentially high skill level and resources. 

o Terrorism: This can be conducted by perpetrator(s) of varying, but potentially high, skill 
levels. Terrorists are politically motivated and are interested in information theft, and 
destruction of resources on a massive scale. 

o Corporate Rivalry: An organization with limited resources and a high technical ability. 
Corporations are interested in information theft to gain an advantage on their 
competition. They may also be destructive and intend to harm competitive corporations. 

o Cracking: A single individual (cracker) likely with limited resources and a high technical 
ability. Usually motivated by a technical challenge and may or may not be destructive. 

o Vandalism: A single individual with few resources and modest technical ability. Vandals 
want to make their mark on the world, and do so by defacing or destroying assets. 

by means of from an use a by expoiting a on an causing that exhibit
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o Voyeurism: A single individual with few resources and modest technical ability. Voyeurs 
are curiosity seekers and typically any damage they cause is usually accidental. 

• Propagation: This column is used to describe the level of propagation employed by the 
attack. For our purposes it is sufficient to distinguish between human controlled propagation 
of attacks and the autonomous propagation of viruses and worms. 
o Human: Human propagation attacks are those actively controlled by a human being. This 

includes Trojans that provide a back door to the system, scheduled distributed DoS 
attacks, and most other attacks. 

o Autonomous: Those attacks executed by self-perpetuating automated processes. Little or 
no human interaction is needed for these attacks to be successful. When human 
interaction is required, it is on the part of an unsuspecting user. This class of attacks 
includes viruses and worms. Trojans containing viruses and worms are also included in 
this category. 

• Attack Origin: This column describes the physical origin of the attack with respect to the 
victim machine. 
o Local: This is an attack that is initiated on the machine being attacked. An example of a 

local attack is a user logged onto a machine who then attempts to gain root access to the 
same machine. (This is an insider attack). 

o Remote (single source): This is an attack that originates somewhere other than on the 
machine being attacked, and has a single point of origin. An example of a remote single 
source attack would be an unauthorized user attempting to gain access to a system over a 
network. (This is an outsider attack). 

o Remote (multiple sources): This is an attack that originates somewhere other than on the 
machine being attacked, and has multiple points of origin. An example of a remote 
multiple source attack would be any distributed denial of service attack. 

• Action: This column descries what specific activity the attacker is performing on the victim. 
o Probe: “Access an asset in order to determine its characteristics” [8]. 
o Scan: “Access a set of assets sequentially in order to identify which assets have a specific 

characteristic” [8]. 
o Flood (Single Source): “Access an asset repeatedly in order to overload the asset’s 

capacity” [8]. In this case, all of the flooding data comes from a single location. 
o Flood (Multiple Source): “Access an asset repeatedly in order to overload the asset’s 

capacity” [8]. In this case, the flooding data comes from 2 or more locations. 
o Authenticate: “Present an identity of someone to a process and, if required, verify that 

identity, in order to access an asset” [8]. 
o Bypass: “Avoid a process by using an alternative method to access an asset” [8]. This can 

be used to gain access to, or elevate privileges in a system. 
o Spoof: “Masquerade by assuming the appearance of a different entity in network 

communications” [8]. 
o Read: “Obtain the content of data in a storage device, or other data medium” [8]. This 

activity implies that open, read, and possibly close operations are performed on a static 
file or data source. 

o Copy: “Reproduce an asset leaving the original asset unchanged” [8]. 
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o Termination: Terminate a running process. This is frequently done in single point denial 
of service attacks, where an attacker will use a buffer overflow to kill a process. 

o Create Processes: Spawn multiple processes, child or otherwise. This action is used by 
denial of service attacks that attempt to fill up the process table on a system. 

o Execute: Execute as a process on a system. Typical of viruses and trojans, this is usually 
part of a multiple step attack where code is executed on the victim machine. 

o Steal: “Take possession of an asset without leaving a copy in the original location” [8]. 
o Modify: “Change the content or characteristics of an asset” [8]. 
o Delete: “Remove an asset, or render it irretrievable” [8]. 
o Misdirect: Literally, “To lead in the wrong direction”. In this case the act of misdirection 

is deliberate and deceitful. Such as, fulfilling a request to an asset that appears to be 
legitimate, but in actuality is a subterfuge used to extract information from the asset. 
Cross site scripting is an example of this. Since we include the concept of deceit, 
misdirection covers any attempt to lie to an asset and provoke an action based on the 
falsehood. Thus, email scams are counted as misdirection. 

o Eavesdrop: The extraction of data from a dynamic and transient data stream. This activity 
implies that the collection process does not significantly disturb the data stream. 

• Vulnerability: This column describes the type of vulnerability that is being exploited by the 
attacker. In the categorization we list the primary sources of vulnerabilities, which are 
sufficient for our purposes. 
o Configuration: This vulnerability occurs when a resource is configured improperly, and 

as a result a security hole is created [8]. An example of this could be any system or 
software that ships with a default account that is not changed or removed upon setup. 

o Specification/Design: “A vulnerability inherent in the design or specification of hardware 
or software whereby even a perfect implementation will result in a vulnerability” [8]. 

o Implementation: “a vulnerability resulting from an error made in the software or 
hardware implementation of a satisfactory design” [8]. 

• Asset: This column describes the component that is under attack. Again, while this is a fairly 
high level list, it suits our purposes well. 
o Network: “An interconnected or interrelated group of host computers, switching 

elements, and interconnecting branches” [8]. 
o System: “A device that consists of one or more associated components, including 

processing units and peripheral units, that is controlled by internally stored programs, and 
that can perform substantial computations, including numerous arithmetic operations, or 
logic operations, without human intervention during execution. Note: May be stand 
alone, or may consist of several interconnected units” [8]. 

o Process: “A program in execution, consisting of the executable program, the program’s 
data and stack, its program counter, stack pointer and other registers, and all other 
information needed to execute the program” [8]. 

o Data: Representations of facts, concepts, or instructions in a manner suitable for 
communication, interpretation, or processing by humans or automatic means [9]. Data 
can be in the form of files in a computer’s volatile or non-volatile memory, or a data 
storage device, or in the form of data in transit across a transmission medium [8]. 
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o User: A user has at least some access privileges on a specified system. These access 
rights may vary from user to user. Attacks against users are typically attempts to mislead 
or misdirect. Examples of user attacks include misleading emails (scams) and 
misdirection through cross site scripting. 

• State Effect: This column is used to describe the state change that occurs on the victim as a 
result of an attack. 
o Availability: The availability state of a resource is related to the responsiveness of the 

resource in meeting service requests [8]. A successful attack on availability will cause the 
response time of a request to an affected service to increase, or the service to become 
entirely unavailable. By definition, all denial of service attacks exhibit availability 
effects. An example would be the UDP storm attack, where availability of the UDP echo 
service to legitimate requests is reduced on the victim machine. 

o Integrity: The integrity state of a resource is related to the correctness of a resource in 
meeting service requests [8]. Integrity also includes the concept of data validity. No user 
(authorized or not) should intentionally or accidentally corrupt data, and unauthorized 
users should not modify data in any way. It follows from this that anything an 
unauthorized user does that alters or adds a file, user account, changes permissions, or 
modifies data on the system in any manner is an integrity violation. An example of an 
attack that affects integrity is the ARP poison attack. In the ARP attack an unauthorized 
user places invalid MAC addresses into the victim machines ARP table. 

o Confidentiality: The confidentiality state of a resource is related to the precision of the 
resource in meeting service requests, that is, “whether the resource produces the precise 
amount of output for a given input” [8]. A confidentiality attack aims at producing more 
information than normal for a given request. For example, an attacker who is monitoring 
a network transmission will collect a duplicate copy of a transaction, with the result that 
twice as much data will be produced as normal, one copy for the recipient, and one for 
the attacker. A successful attack on confidentiality could provide the attacker with 
information about the network, individual systems, system processes, and or data on a 
host. Furthermore, since use of resources is part of a trust relationship, (specified or not) 
unauthorized use of resources should result in zero output. Thus any successful 
unauthorized use of resources can also be considered a confidentiality violation. Note that 
under this definition, if an intruder were to break into a system and use the printer, all of 
the services used including the printer would experience confidentiality violations. A 
classic example of a confidentiality attack is the ping sweep. 

o None (allowed action): This represents no state effect. Some attacks begin with a step 
that is a legal user activity. In this event, that step has no detectable state change. 

• Performance Effect: This column is used to describe the performance change that occurs on 
the victim as a result of an attack. 
o Timeliness: A measure of how fast an output is generated based on a given input [8]. 
o Precision: This is how much output is produced for a given input [8]. The amount of 

output should always be 100% of the expected output. Certain conditions can cause 
values of other than 100% output. For example, the resource being used could crash in 
the middle of an operation, resulting in only a small portion of the expected output being 
produced. As a further example, if an employer is using a key logger, than every 
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keystroke produces at least 200% of the expected output by the user, one copy of the 
keystroke for the application, and one copy for the logger. 

o Accuracy: A measure of how good an output is when related to the content quality of the 
expected output [8]. One method of measuring this is through a distance value between a 
computed checksum for the current data stream and the original (expected) data stream 
[8]. An example of an attack effecting accuracy would be a man in the middle attack, 
where the packet MAC and/or IP addresses are modified. 

o None (allowed action): This represents no performance effect. Some attacks begin with a 
step that is a legal user activity. In this event, the step has no detectable performance 
change. 
In keeping with fault modeling theory, our classification is ordered in terms of cause and 

effect. The overall incident begins with a threat, followed by an attack. A threat is composed of 
the three columns: objective, propagation and attack origin the attack includes action, 
vulnerability, asset, and state and performance effects. Additionally, the first six columns 
indicate the cause, while the last two the threat. 

This classification scheme takes the form of  checklist taxonomy and largely supports and 
extends the work done by Howard and Longstaff [9]. It is easy to understand, modify and extend. 
The relationship between cause and effect within an attack is clear. Beyond that, the relationship 
of the threat and attack within the overall incident is clear as well. Some of the columns in the 
classification scheme are very high level, and could be broken down into more elements, or even 
sub-lists. For our purposes of separating cyber-attacks into domains, the high level 
categorizations are sufficient. 

It is important to note that in this format, not all possible combinations of factors make 
sense. Obviously, for any attack that is being classified, combinations of factors that make sense 
and describe the attack should be selected. There are at least two ways in which to employ this 
system to classify attacks. The first is to traverse all of the lists and iteratively select all the 
factors from each category that are descriptive of the attack. Using this method produces results 
that are unsuitable for taxonomy, but are sufficient for work involving ontology. The second 
method is to refine the attack into its constituent parts such that each part possesses only a single 
entry from each of the lists. This method does produce results that can be put into taxonomy. 

We give four example attacks to show how attacks are classified using our classification 
system in Table 3. Note how the classification factors extracted from each example can be 
tabulated for comparison. We give descriptions of each of these four attacks below, along with 
explanations regarding their classification in Table 3. 
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Table 3. Example of cyber-attack classifications in table format 

Attack Name Objective Propagation Attack Origin Action Vulnerability Asset State Effect Perf Effect 

UDP Storm Any Human Remote (Single 
Source) Flood Specification / 

Design Network Availability Timeliness 

Slammer Worm Cracking Autonomous Remote (Single 
Source) Copy Implementation Process Integrity Accuracy 

Slammer Worm Cracking Autonomous Local Execute Specification / 
Design System Integrity Accuracy 

Slammer Worm Cracking Autonomous Local Scan Specification / 
Design Network Availability Timeliness 

Database Insider: 
Reconnaissance 

Professional Crime 
/Corporate 

Rivalry/Vandalism 
Human Local Probe Specification Data Availability Timeliness 

Database Insider: 
Data Collection 

Professional Crime 
/Corporate 

Rivalry/Vandalism 
Human Probe Read Specification Data Confidentiality& 

Availability Precision 

BGP route isolation 
attack 

Terrorism /Corporate 
Rivalry Human Remote (Single 

Source) 

Spoof 
/misdirect 

/delete 
/terminate 

specification Network Availability 
/integrity 

Timeliness 
/precision 

 
3.2.1.1 UDP Storm 
 

The first cyber-attack is called UDP Storm [10]. In this case, the attacker has learned of 
two vulnerable machines that will be his victims. The attacker sends out a spoofed packet to the 
echo port of victim A that appears to come from the echo port of victim B. When victim A 
receives the packet it responds with an echo-reply to the echo port of victim B. Victim B 
perceives the packet from A as an echo-request, and sends out an echo-reply to victim A. A then 
replies to B and this cycle continues until one of the echo services is shut down. 

This attack can be executed by anyone who has access to one of many publicly available 
packet spoofing tools, some knowledge of the fields in a UDP packet, and minimal computer 
hardware. This is a low enough set of requirements to select Any from the Objective source 
column of the taxonomy. A single human being starts the attack process, and the point of origin 
for the packet that triggers the UDP loop comes from a single, remote location. So we select 
Human from the Propagation category and remote (single source) from the Attack Origin 
category. This attack is a little unusual in that while only a single packet is sent by the attacker, it 
creates a packet flood on the network. We select Flood from the action category since that is the 
attackers intended action. The attacker is taking advantage of a vulnerability in the design of the 
UDP echo server to create this packet flood, i.e. the designers did not anticipate this kind of 
abuse and did not include a mechanism to avoid it.  Hence we select Specification/Design from 
the vulnerability category. Through use of the packet flood, the attacker is attempting to increase 
the ratio of attacking (flood) packets to normal traffic on the network, so we select Network from 
the Asset category. The attacker changes this ratio by producing a large enough packet flood to 
reduce the available network bandwidth, so we select Availability from the State effect column. 
When this ratio gets high enough, the amount of time the network spends carrying legitimate 
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data is reduced, and the legitimate traffic begins experiencing delays. Thus we select Timeliness 
from the Performance Effects category. 

 
3.2.1.2 Slammer 

 
The second example is an Internet worm called Slammer [11]. This worm spreads from 

an infected host by sending out UDP packets to port 1434 at random IP addresses. Each packet 
contains a buffer overflow attack affecting Microsoft SQL Server 2000, and a complete copy of 
the worm. When the packet hits a vulnerable machine, a buffer overflow occurs, and this allows 
the worm to execute on the new victim. Once executing on the new victim, the worm installs 
itself, and then begins sending out packets to try and locate more hosts to infect. 

We have found that worms are best classified by iterating through the classification 
scheme until all of the details of the attack are expressed. This worm essentially operates in three 
stages (infect, execute and spread) so we expect to iterate through the classification scheme three 
times. Based on the skill level involved to implement a worm attack, and the fact that there is no 
obvious political or financial gain, we consider this to be a cracking Objective with autonomous 
Propagation. The buffer overflow attack originates at a single remote location relative to the 
victim machine, and we therefore select Remote (Single Source) from the Attack Origin menu. 
The first action taken by the worm is to copy itself from the attacker to the victim machine, and 
this is done by exploiting the implementation (buffer overflow) vulnerability in MS-SQL Server 
Process. From that information we select Copy and Implementation from the Action and 
Vulnerability categories respectively, and process in the Asset column. This breaches the 
integrity of the SQL Server process, and affects the accuracy of its output. That is, the SQL 
Server process is now under the control of Slammer and will output what the worm tells it to. We 
therefore select integrity from the State effects and Accuracy from the Performance Effects 
categories. 

We now iterate for the next part of the worm, which takes place on the local machine 
(victim). Since the attack is now coming from the local system, we select local from the Attack 
Origin category. At this point, Slammer executes, taking over a process on the victim and we 
select Execute from the Action category. This ability to execute takes advantage of the fact that 
the worm is running in the context of the SQL Server process, and the action is allowed by the 
system specifications. Thus we select Specification/Design from the vulnerability category. The 
worm is employing the resources of the system it is executing on, and so we select system from 
the Asset category. When Slammer accesses the system resources, this is a violation of the 
system integrity, as the worm should not have the privileges to access said resources. This illegal 
access changes the accuracy of the system because slammer is misidentified as being part of the 
MS-SQL Server. On this basis, we select Integrity and Accuracy from the State and Performance 
Effect categories respectively. 

In the final iteration, the attack continues to come from the local host, but now Slammer 
is using the local host to scan for new victims. From these activities, we select Local from the 
Attack Origin category, and Scan form the Action category. Slammer is operating as the MS-
SQL process, and as such, the OS specification continues to allow it to run. So again, we select 
Specification/Design from the Vulnerability category. From our local point of view on the 
victim, the worm is now sending out a large amount of network traffic for its scans. This has the 
effect of reducing available network bandwidth, and hence causing delays in legitimate network 
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traffic. From this behavior we select Network from the Asset category, along with Availability 
and Timeliness from the State and Performance Effect categories respectively. 

 
3.2.1.3 Database Insider 

 
For this type of attack, we consider a sample database insider attack. The key aspects of 

this attack are connection by database user, reconnaissance queries by user, and data collection 
queries by user. Because, in the database insider problem, much of the relevant information is 
carried by subtle characteristics of the semantically complex query time series, there are many 
variants of these aspects. For the insider case, we select Professional Crime, Corporate Rivalry 
and Vandalism as Objectives. These attacks are propagated by humans from a local location. The 
Actions are probe and read in each phase respectively. Both phases exploit a 
Specification/Design vulnerability on a data Asset. Both phases cause an availability State Effect 
due to user actions on the system. The second phase also breaches confidentiality. For 
performance effects, we select Timeliness in phase one and Precision in phase two. 

 
3.2.1.4 BGP Route Isolation 

 
A network isolation attack ultimately manifests as complete loss of connectivity to one or 

more prefixes. The goal of the adversary is to prevent any communication to some victim 
network. Often, the real target of such an attack is some enterprise or organization within some 
larger autonomous system. However, because these attacks are carried out against the AS at the 
prefix level, there is often collateral damage to nearby (in the addressing sense) networks within 
the same AS. For the purpose of the following analysis, we consider the entire AS to be the 
victim AS, and defer issues of intra-domain network isolation to future work. The adversary 
must have access to the control plane of interdomain routing to be able to mount many of the 
attacks discussed in this section (e.g., is able to force an AS to act maliciously). Given our 
observation of the relatively poor security practices of many ASes, this does not seem to be 
unreasonable. We refer to the AS acting maliciously as the adversary AS. 

The adversary has several ways to affect the reachability of an AS. Firstly, the adversary 
can hijack the prefix by claiming to be the origin of the victim’s prefixes. Note that because both 
the victim and adversary AS both continue to announce the prefix, the effect of the attack will 
only affect those ASes that find the path to the adversary AS to be better (e.g., has shorter path). 
Because malicious announcements are only propagated to those parts of the network to which 
they will be the “best origin”, sensors should be distributed as many points in the network as is 
possible. 

The adversary can also manipulate the paths through the network to isolate the victim. In 
the simplest case, the adversary can route all traffic through its AS. The adversary AS could 
further drop all packets to the network. Other manipulations of BGP can achieve the same effect. 
The adversary can prevent convergence of the path selection by inserting and removing 
seemingly good paths, or simply by preventing the propagation of real paths. 

Lastly, the adversary can disconnect the AS from the network by physically severing the 
links between the AS and the larger Internet. Known historically as the backhoe attack, these 
attacks obviously are beyond the ability of any sensor network to thwart. However, sensors may 
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be able detect the existence of link severing. Interestingly, link cutting results in many of the 
same interdomain routing behaviors as the origin and path manipulations described above. 

 

Malicious
AS

Victim
AS

Internet
Core

Host A Host B

BGP Speakers

(1)

(2) (3)

(4)

(5) (6)

 
Figure 5. A simplified interdomain routing environment. 

 
Figure 5 presents a view of a simplified network environment. We present only as much 

of the routing infrastructure to motivate the isolation sensor infrastructure environment. For 
example, the adversary and victim ASes are presented as stub-ASes, but this is not necessarily 
the case (e.g., they may transit traffic). Also, there may be any number of other ASes 
participating in the creation and distribution of routing data. We simply denote this set of ASes 
as the Internet core. Note also that BGP speakers 2 and 3 and hosts 5 and 6 represent a 
multiplicity of hosts and nodes upon which we can place sensors. 

To classify this attack, we select the following for each column in Table 3: Objective: 
Terrorism/Corporate Rivalry, Propagation: Human, Attack Origin: remote (single source), 
Action: spoof/misdirect/delete/terminate, Vulnerability: specification/design, Asset: network, 
State Effect: availability/integrity and Performance Effect: timeliness/precision. 

 
3.2.2 Classification Trees 

 
Cyber-attack classifications can be depicted in a tabular format as shown above in Table 

3, or expanded into a tree structure. The tabular system allows this information to easily be 
stored in a database, but the tree structure allows quick visual comparisons, and depicts the 
structure of the cyber attack sub-domains. We employed the tree structure to select representative 
cyber attacks from each of the sub domains revealed by the categorization scheme. A portion of 
our tree can be seen as an example in Figure 6. 
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Figure 6. Example Classification Tree 

 Threat → Agency → Origin → Action → Vuln. → Target → State → Perf. → Attack
 Any 
 Autonomous Virus / Worm 
 Local 
 Copy 
 Specification / Design 
 Network 
 Availability 
 Timeliness 
 Bugbear.B@mm (Part G - mail/infect other victims) [18] 
 Love Letter worm (Part E - mail/infect other victims) [14] 
 SoBig (Part E - mail/infect other victims) [15] 
 W32.HLLW.Fizzer@mm (Part I - mail/infect other victims) [16] 
 W32.Mimail.A@mm (Part F - mail/infect other victims) [17] 
 W32.Welchia.Worm (Part G - infect other victims) [19] 
 System 
 Confidentiality 
 Precision 
 W32.Mimail.A@mm (Part E - relay information about victim) [17] 
 Integrity 
 Accuracy 
 SoBig (Part F - Download and execute adjunct files) [15] 
 W32.Welchia.Worm (Part C - execute, install on, and Patch victim) [19] 
 Delete 
 Specification / Design 
 System 
 Integrity 
 Accuracy 
 W32.Welchia.Worm (Part E - Remove W32/Blaster) [19] 
 Eavesdrop 
 Specification / Design 
 System 
 Confidentiality 
 Precision 
 Bugbear.B@mm (Part F - relay key log activity from victim) [18] 
 Execute 
 Specification / Design 
 System 
 Integrity 
 Accuracy 
 Bugbear.B@mm (Part C - execute and install on victim) [18] 
 Love Letter worm (Part C - execute on victim, disseminate within file system.)  [14] 
 Slammer / MS-SQL Server Worm (Part B - execute on victim) [12] 
 SoBig (Part C - execute and install on victim) [15] 
 W32.HLLW.Fizzer@mm (Part C - execute and install on victim) [16] 
 W32.HLLW.Fizzer@mm (Part E - open back door on victim) [16] 
 W32.HLLW.Fizzer@mm (Part G - disseminate on victim) [16] 
 W32.Mimail.A@mm (Part C - execute and install on victim) [17] 
 Scan 
 Specification / Design 
 Network 
 Availability 
 Timeliness 
 Slammer / MS-SQL Server Worm (Part C -  scan/infect other victims) [12] 
 Remote (Single Source) 
 Copy 
 Implementation 
 Process 
 Integrity 
 Accuracy 
 Slammer / MS-SQL Server Worm (Part A - find and infect victim) [12] 
 
 Human 
  Remote (Single Source) 
   Flood 
 Specification / Design 
 Network 
 Availability 
 Timeliness 
 UDP Storm [1] 
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What follows is a brief description of the attacks in the example tree. It is important to 
note that we view the sequence of events and effects from the victim machine. As a result worms 
often manifest as an incoming attack, and then after establishing themselves on the victim, an 
outgoing attack. 

 
3.2.2.1 Love Letter 

 
The Love letter worm is primarily an email worm, but it spread by other vectors as well. 

It is a VBS script, so it can easily be picked up from any infected location. We have broken this 
cyber attack into five functional stages. In the first stage, a remote host either locates the victim 
from a stored email address on the infected host, or infects a file that is of interest to the victim. 
Love Letter then copies itself to the victim machine either through an infected email sent to a 
user, or via a file downloaded by a user.  In the second stage a user on the victim machine is 
mislead into opening and starting the attachment or file containing the Love Letter worm.  The 
third stage occurs when the worm begins executing, and installs itself on the victim machine.  
The worm then begins disseminating on the new host, replacing various script files it finds with 
copies of itself, possibly adding a script to mIRC clients, and updating the start page for explorer.  
In the fourth stage, the worm reads the address book from the victim machine.  In the last stage, 
the Love Letter emails copies of itself to all of the addresses found in stage four and this may 
have consequences for network bandwidth [12]. 

 
3.2.2.2 SoBig 

 
The SoBig worm spreads strictly by email.  We have broken this cyber attack into six 

functional stages.  In the first stage, SoBig is operating on a remote system, has located the 
victim from an email address read from that remote machine, and sends out an infected email 
that is received by a user on the victim machine.  In the second stage, a user on the system is 
misdirected into opening the attachment containing SoBig.  Then, in the third stage, the worm 
executes and installs itself on the victim machine.  In the fourth stage, the worm scans the victim 
machine for email addresses.  In stage five, SoBig begins propagating by sending email to the 
addresses found in stage four and this may have consequences for network bandwidth.  SoBig 
can switch in and out of its last stage where it downloads and executes arbitrary files.  This has 
been used to steal confidential information, set up spam relays, and may be used as a method of 
updating the virus [13]. 

 
3.2.2.3 W32.HLLW.Fizzer@mm 

 
Fizzer is primarily an email worm although it will try to spread through the KaZa 

network by infecting files in the KaZa shared folder.  We have broken this cyber attack into nine 
functional stages.  In stage one, the worm locates a victim either from an email address stored on 
the infected host, or infects a file that is of interest to the victim.  Fizzer then copies itself to the 
victim ether by sending an email to a user, or via a file downloaded by a user on the victim 
machine.  In stage two, a user on the victim machine is misdirected into opening the infected file 
or attachment.  In stage three, Fizzer executes and installs itself on the system.  In the next stage, 
Fizzer will attempt to terminate any anti-virus programs that are on the system.  In stage five, the 
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worm begins the process of opening back doors to the system.  This includes connecting to chat 
rooms (IRC and AOL) to listen for instructions, running as an http server, opening additional 
ports for connections, and looking for updates.  In stage six, Fizzer begins logging keystrokes.  In 
the next stage Fizzer disseminates on the victim, infecting any KaZa shared files that it can.  In 
stage eight, Fizzer scans the victim’s machine for email addresses.  Finally, in the last stage, the 
worm begins propagating by email, using the addresses discovered in stage eight and this may 
have consequences for network bandwidth [14]. 

 
3.2.2.4 W32.Mimail.A@mm 

 
The Mimail worm spreads strictly by email and we have broken this cyber attack into six 

functional stages.  In stage one the worm is has located a victim from an email address stored on 
the infected host, and sent a copy of itself to the victim in an infected email attachment.  In stage 
two, a user on the victim machine is misdirected into opening the infected email attachment.  In 
stage three, Mimail executes and installs on the victim.  In stage four the worm scans the victim 
machine for email addresses that it can use for dissemination.  In stage five, Mimail begins 
capturing data from certain desktop windows on the victim, and relaying that data to its designer 
via email.  In stage six, the worm begins emailing itself to other potential victims (the addresses 
found in stage four) [15]. 

 
3.2.2.5 Bugbear.B@mm 

 
Bugbear is primarily an email worm but also has the capability of spreading over network 

shares.  Our analysis breaks this worm into seven functional stages.  To begin, the worm is 
running on a remote host and either emails itself to a user address found in list on that infected 
host, or the user on the local (victim) machine has unknowingly downloaded a file infected by 
the worm.  In the next stage, the user is misdirected into opening the infected email or file. In the 
third stage, Bugbear executes and installs itself on the victim machine.  Once stage three is 
complete, Bugbear spans several worms to execute each of the following stages independently.   
In stage four, the worm disseminates on the victim, infecting certain files located on the local 
victim and connected network shares. In stage five, Bugbear opens a back door to the system, 
and begins listening for commands.  In stage six, the Bugbear starts a key logger and periodically 
sends the log to its creator.  In the final stage, the worm scans the victim machine for email 
addresses, and sends out copies of itself via email to the addresses it finds [16]. 

 
3.2.2.6 W32.Welchia.Worm 

 
Welchia is an Internet worm that is fully automated and exploits buffer overflows to 

spread.  For purposes of classification, we have identified seven functional stages in this worm.  
During stage one of this worms cycle, it uses a ping scan to locate potential hosts.  In stage two, 
Welchia locates a potential host, and exploits a buffer overflow implementation vulnerability in 
DCOM RPC (or WebDav), to download a copy of itself and the tFTP program from the 
attacking system.   In the third stage, the worm executes on the new victim, where it downloads 
and installs the RPC patch from Microsoft.  In the fourth stage, Welchia reboots the victim 
machine as part of the patch installation procedure.  In stage five, Welchia will halt the blaster 
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worms process if it is running, and delete blaster.exe thus removing any blaster infection.  In 
stage six, blaster will begin outbound ping scans for new hosts.  In stage seven, blaster has 
located a potential remote host and tries to infect the new machine [17]. 

 
3.2.2.7 Slammer / MS-SQL Server Worm 

 
Slammer is described in the classification table example from the previous section. 
 

3.3. Attack Profiling 
 
From our attack classification research, we chose 8 attacks that fit a variety of different 

fields in our classification table. We created profiles for these attacks. 
An attack profile takes the form of a cause-effect chain or network of activities, state 

changes, and performance impacts with resource-process interactions and activity-state-
performance interactions throughout the course of an attack scenario. Attack profiling will help 
understand attacks and how they can be predicted using observable points, each of which is made 
up of a data, feature and characteristic (DFC). Each node in the cause-effect network of each 
attack profile will become a candidate observable point. 

Based on the activity-state-performance changes, observable points can be selected such 
that monitoring the observable points will be useful in predicting the attack. The observable 
points can be an activity, a state change or a performance impact anywhere along the cause-
effect chain for the attack. For each attack, based on the knowledge of the observable points, 
computer data that can be used to identify/predict the attack, its feature and characteristic can be 
suggested. 

The following definitions and explanations are provided to explain how we profile an 
attack. After this, we profile one attack with further explanation. 

Data: The raw data collected and monitored. 
Feature: The measure from the data, such as individual observation, mean, variance, 

probability distribution, covariance, auto-correlation, dependency, stationarity and chi-square 
distance. 

Characteristic: The characteristic of a given feature that enables the distinction of an 
attack from normal behavior, such as shift, trend (i.e., cyclic and seasonal), drift (i.e., upward and 
downward), intermittent spike or bump, and change (step change, spike, exponential change, 
slope change, sine wave, square wave, etc.), and changes in dynamic state, phase 
synchronization, etc. 

Sub-Indicator: Unique combination of DFC 
Indicator: Composed of one or more sub-indicators  
Observation: One or more indicators to uniquely identify an attack. 
• If indicators have more than one sub-indicator, then all sub-indicators are needed to 

identify the indicator  
• If observations have more than one indicator, then each indicator independently 

identifies the observation. 
• Indicators will have unique ID numbers. We are developing a novel numbering 

scheme to uniquely classify indicators. The unique ID for each indicator of an 
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observation will be based on the indicator’s DFC, and where the data is located 
(including protocol/log and physical location of collection). 

Table 4 illustrates the possible variations of indicators and sub-indicators an observation 
may contain. 
 

Table 4: Illustration of Profile 

Observation Indicator Data Feature Characteristic 
A 1    

   B 2    
3    C 4    
5    

   D 6    
 
From Table 4, we note the following: 

• Observation A has only one indicator 1. 
• Observation B has one indicator 2, which is made of two sub-indicators. 
• Observation C has two indicators 3 and 4.  
• Observation D has two indicators 5 and 6. Indicator 6 has two sub-indicators. 

Data dependence, Spatial, temporal and causal relationships are captured, in the form of 
formulas. An attack formula contains the spatial, temporal and causal relationships required to 
detect a specific attack. 

Data dependence relationship: If the same data set is used to identify more than one 
observation, then these observations have the data dependence relationship. For ex: If C, D and E 
are all observations made on the same data source, they have the data dependence relationship.  

Spatial relationship: Based on locations, such as host (L1), router of hosts network (L2), 
intermediary network’s router (L3), BGP routers AS1, AS2 and AS3. 

Temporal relationship: Relationship based on time of occurrence of observations. For 
ex: A happens before B 

Causal relationship: If one observation is the cause for another, a causal relationship 
exists. For ex: A is the cause for B and C. 

Formula to represent the attack: This formula combines the spatial, temporal and 
causal relationships of an attack. A particular attack formula can be used to specify how to 
design a sensor to detect that attack. To detect an observation, which has two/more indicators, we 
could use any/all of the indicators. This is represented by an OR ( | ) in the formula. Spatial and 
temporal relationships are captured in the location (l) and time (t) values in the formula. Arrows 
in the formula indicate a causal relationship. 

Next, we describe the development of an attack profile through and example and then 
profile several attacks as examples. Each attack will have 3 pieces of information: Diagram of 
observations, attack profile, and formulas: Data Dependency and Spatial/Temporal/Causal. 
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To describe how this information is displayed, we use the Apache2 Web Server attack as 
an example. The Apache2 attack is a denial of service process attack. It attacks the web server 
process by flooding it. In this attack an attacker sends a request with many http headers. If the 
server receives many of these requests it will slow down, and may eventually crash. The attack is 
most effective when all the headers are the same. This causes a non-linear consumption of 
memory, and can quickly overwhelm the available resources [18]. 
 
1. Outline of observations (see diagram in following section) 

 
A HTTP packets with large headers 
B Multiple HTTP packets requesting same file. 
C HTTP requests from one source arrive unusually fast. 
D Comparatively high memory util by web server process 
E Comparatively high CPU util by web server process 
F More HTTP requests arrive than are serviced 
G Web server response time increases 

 
2. Attack profile 

 
The profile for the Apache attack is shown in Table 5, where L1 = observed at victim 

machine and L2 = observed at victim’s router. In later profiles, L3 = observed on the network. 
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Table 5. Apache Web Server Attack 
OBS Indicator Data Feature Characteristic

l1 EWMA of HTTP GET message header size Chi-squared distance Step change

l2
EWMA of HTTP GET message header size with 
same DEST IP Chi-squared distance Step change

l1
EWMA of similarity score of pairwise observations of 
filename in HTTP GET messages Chi-squared distance Step change

l2
EWMA of similarity score of pairwise observations of 
filename in HTTP GET messages with same DEST IP Chi-squared distance Step change

l1
EWMA of similarity scores of InterArrival Time of 
HTTP GET messages from same SRC IP Chi-squared distance Step change

l2
EWMA of InterArrival Time of HTTP GET messages 
from same SRC IP with same DEST IP Chi-squared distance Step change

D l1
EWMA of ratio of (Web server memory usage/Sum of 
all other processes memory usage) Chi-squared distance Steady increase

E l1
EWMA of ratio of (Web server CPU usage/Sum of all 
other processes CPU usage) Chi-squared distance Steady increase

l1
EWMA of Ratio of count of HTTP GET/POST 
messages Chi-squared distance Steady increase

l2
EWMA of Ratio of count of HTTP GET/POST 
messages to/from same IP Chi-squared distance Steady increase

l1
EWMA of difference in arrival times of GET and 
corresponding POST HTTP messages Chi-squared distance Steady increase

l2
EWMA of difference in arrival times of GET and 
corresponding POST HTTP messages  to/from same 
IP

Chi-squared distance Steady increase
G

A

B

C

F

 
 
Data collection details 

 
We include data collection details to show how we can collect the required data for an 

observation. This full table is not included here.   
 
Table 6 only shows an example for reference. The indicator numbers correspond to 

indicators in the attack profile and will be unique for each indicator (indicators are reusable 
across attacks). 
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Table 6. Example data definitions 

Indicator Data Data Elements 

HTTP message first header line begins with GET 1 EWMA of HTTP GET message 
header size HTTP message header size 

HTTP message first header line begins with GET 
HTTP message header size 

2 
EWMA of HTTP GET message 
header size with same DEST 

IP 
IP packet header DEST has same IP address 
HTTP message first header line begins with GET 

3 
EWMA of pairwise 

observations of filename in 
HTTP GET messages HTTP message requested file string 

HTTP message first header line begins with GET 
HTTP message requested file string 4 

EWMA of pairwise 
observations of filename in 
HTTP GET messages with 

same DEST IP IP packet header DEST has same IP address 
HTTP message first header line begins with GET 

5 
EWMA of InterArrival Time of 
HTTP GET messages from 

same SRC IP 
HTTP message header field contains "From: <same 
user>" 
HTTP message first header line begins with GET 
HTTP message header field contains "From: <same 
user>" 

6 

EWMA of InterArrival Time of 
HTTP GET messages from 

same SRC IP with same DEST 
IP IP packet header DEST has same IP address 

HTTP message first header line begins with GET 
7 

EWMA of difference in arrival 
times of GET and 

corresponding POST HTTP 
messages 

HTTP message header begins with POST <same user 
socket> 
HTTP message first header line begins with GET 
HTTP message header begins with POST <same user 
socket> 
GET messages to DEST IP 

8 

EWMA of difference in arrival 
times of GET and 

corresponding POST HTTP 
messages  to/from same IP POST messages from SRC IP = DEST IP of previous 

row 
 
3. Attack formulas (Data Dependency/Spatial/Temporal/Causal) 

***Note: Here we show the entire derivation of the relationship formulas in steps A-E. 
On the profiles, we will only show A and E. 

A. Data dependent relationship: 
This relationship is when multiple observations are made on the same data. 

Let X: A set of attack packets on the network, going to the victim. Then, 
{xi , xj  |  A(xi), B(xi , xj), C(xi , xj) } ∀ xi , xj  ∈ X, where xi precedes xj; 

• A(xi) means observation A is made on data element xi. 
• B(xi , xj) means observation B is made on the pair (xi , xj ). In this example, we look 

at pair wise observations of filename. Thus, we need both xi and xj  
• Similarly, C(xi , xj) is for inter arrival times of two successive packets. 

B. Spatial relationships: 
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A(l1) ∧ A(l2) , B(l1) ∧ B(l2) , C(l1) ∧ C(l2), D(l1) ∧ D(l2), E(l1) ∧ E(l2), F(l1) ∧ F(l2)¸ G(l1) ∧ G(l2) 
∧: Observation A is observed at both L1 and L2. Either L1, or L2, or both could be 
extracted to indicate the observation.  

C. Temporal relationships: 
A(ti…j) , B(ti…j), C(ti…j), D(ti+1…j+1), E(ti+1…j+1), F(ti+1…j+1), G(ti+1…j+1), where 0 ≤ ti < tj 

• Time is represented by t. The subscripts, when compared to one another, give the 
temporal relationships of the observations. 

D. Causal relationship: 
The symbol -> is used to indicate: “causes (verb)”: 
(A, B, C) -> (D, E) -> (F, G) 
E. Formula to represent the attack: 

This formula is derived from the spatial/temporal/causal formulas. In the case where an 
observable has two indicators and either one/both can be used to detect the attack, then we say 
that they have the OR (|) relationship, for purposes of detection. ∧ indicates an AND relationship 
between observations. So, in the following formula, A and B and C cause D and E which in turn 
causes F and G: 

[A(ti…j , l1) | A(ti…j , l2)]  ∧  [B(ti…j , l1) | B(ti…j , l2)]  ∧  [C(ti…j , l1) | C(ti…j , l2)] 
↓ 

[D(ti+1…j+1, l1) | D(ti+1…j+1, l2)]  ∧  [E(ti+1…j+1, l1) | E(ti+1…j+1, l2)], 
↓ 

[F(ti+1…j+1, l1) | F(ti+1…j+1, l2)] ∧  [G(ti+1…j+1, l1) | G(ti+1…j+1, l2)] 
 

3.3.1 Graphical Representation of Observations 
 

Activity-state-performance interactions are explained in the form of a diagrammatic 
cause-effect chain. Pre attack phases are indicated for each attack, since predicting an attack is 
most useful in the pre attack phase itself. Based on the activity-state-performance interactions, 
possible observable points are also indicated.  
 
3.3.1.1 Apache2 Attack 
 

This attack is described in our example above. Here we include the graphic of the cause-
effect chain for this attack. Figure 7a describes the pre-attack phase which includes a port scan. 
We profile this step separately in the NMAP scanner below. Figure 7b is the attack phase of the 
Apache2 cause-effect profile graphic.
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3.3.1.2 Dictionary attack 
 

A dictionary attack is a remote-to-local system attack. It refers to breaking a cipher, or 
obtaining a password, by running through a list of likely keys, or a list of words. For example, 
one can 'break' a password on a computer in an English speaking country by encrypting each of a 
list of English words and comparing each encryption against the stored encrypted version of 
users' passwords. Since users often choose inappropriate (i.e. easily guessed or broken) 
passwords, this has historically succeeded about 4 times out of 10 when a reasonable list is  
used.  In the case of a cipher, if keys are suspected to be words, the same technique can be used 
to break messages encrypted with it [8]. For the purpose of this attack profile, we assume that 
words are tried in the alphabetical order and with constant time between attempts. Figure 8 
shows the Dictionary attack. 
 
 

a) Pre attack phase of Apache 

State 1: 
Victim running apache 
web server < 1.3.2 
version 

Activity 1: 
Attacker identifies 
victim, that victim 
runs web server and 
web server version. 

Pre attack 
Phase 
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b. Attack phase of Apache 

Figure 7. Apache2 Web Attack 
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Figure 8. Dictionary Attack 

State 1: 
FTP server requiring 
password authentication 
running on victim 

Activity 1: 
Attacker initiates 
dictionary attack program 

Activity 2: 
Program attempts to 
authenticate using next 
entry in the dictionary 
database. 

State 3: Confidentiality 
of the application /file 
system compromised. 

Success 

Failure 

Observation B: 
Subsequent password 
attempts follow 
dictionary pattern 

Observation A: 
Multiple login attempt 
failures 

State 0: 
Attacker probes victim for 
FTP service. 

Observation C: 
Time between 
successive login 
attempts follows pattern 

Activity 4: 
Abnormal use of 
application by attacker 

Observation D: 
Successive attempts to 
login use same 
username 
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3.3.1.3 Meteor FTP server DoS attack 
 

Meteor FTP server DOS attack is a denial of service process attack. It attacks the ftp server 
process by exploiting its buffer overflow vulnerability. Meteor FTP server has a buffer overflow 
vulnerability. If a remote user enters username as USER followed by a random set of characters, 
the FTP server will crash. This is because the long number of input characters does not get 
handled properly in the server software [19]. Figure 9 shows this attack. 
 
 
 

a) Pre-attack phase of Meteor FTP 

State 1: The target machine is running a 
meteor FTP service, which accepts 
remote connection requests. 

Activity 1: Attacker probes FTP port on 
machine. Attacker verifies that Meteor FTP 
service is running on the system. 

Pre attack Phase 
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b) Attack phase of Meteor FTP 

Figure 9. Meteor FTP server DoS Attack 
 

3.3.1.4 NetBus Trojan Attack 
 

NetBus Trojan Attack is a remote-to-local system attack. In this attack, an attacker fools a 
user into installing a copy of the netbus server on the victim machine.  The method used by the 
attacker to fool the user, is a Trojan containing both the netbus server and the game whack-a-
mole.  The user is emailed the Trojan, or a link to it, and told that is a free whack-a-mole game.  
When the user tries to run the whack-a-mole game, an installer starts which installs both the 
game and the netbus server.  The attacker can now use the netbus server as a backdoor to gain 
access to the system with the same privileges as the user who installed netbus [8]. Figure 10 
shows the Netbus attack. 

Activity 2: The attacker connects to 
FTP server and issues long username as 
input. 

Activity 3: The FTP server tries to access 
out-of-bound memory region because of 
this input. 

Activity 4: The OS blocks this application 
from accessing out of bound memory and 
terminates the FTP server. 

Activity 5: OS prints error 
message to server indicating 
the exception.  

Performance 1: No file transfers take 
place anymore through FTP.  
Possible reduction in TCP packets/sec, 
total packets/sec  

State 1: FTP resource is 
no longer available on 
target machine. 

Observation A: 
Long username sent by 
user 

Observation B: 
FTP server termination 
from logs 

Observation D: 
FTP connection attempt 
failures Observation C: 

Fall in network traffic to 
FTP server 
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Figure 10. Netbus Trojan Attack 

 

State 1: 
User running 
WinNT or other 
vulnerable OS 

Activity 1: 
Attacker sends Trojan 
along with a game as 
an email/html link 

Activity 2: 
Victim installs the 
game.(and 
unknowingly the 
Trojan server) 

State 2: 
Integrity of the victim 
breached. 

Activity 3: 
Netbus client on the 
attacker connects to 
victim’s netbus server 
at TCP port 12345 

Observation C:  
Attempt to connect to the new 
port 
 

Activity 4: 
Attacker can do 
miscellaneous actions 
on victim through the 
netbus server. 

State 3: 
Confidential information 
can be accessed. 

Activity 3: 
Netbus server opens 
TCP port 12345 on 
victim. 

Observation B:  
Port opened for 
connection by disallowed 

Observation A:  
New system service added to startup 
automatically 
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3.3.1.5 NMAP scanner 
 
NMAP Scanner attack is a remote-to-local probe attack. Using a variety of ways, NMAP 

can identify the OS running, the open ports, the services running on these ports, the version 
numbers, what types of firewalls are in use and other features. NMAP probes the victim 
machines with specially crafted IP packets. Based on the responses from the victim machines, it 
can identify various features of the victim machine/network [8]. Figure 11 shows the NMAP 
scanner. 
 

 

Figure 11. NMAP Scanner 

 
3.3.1.6 Smurf distributed DOS attack 

 
Smurf is a distributed denial of service network attack. In this attack a network connected 

to the Internet is swamped with replies to ICMP echo (PING) requests. A smurf attacker sends 
PING requests to an Internet broadcast address. These are special addresses that broadcast all 
received messages to the hosts connected to the subnet. Each broadcast address can support up to 
255 hosts, so a single PING request can be multiplied 255 times. The return address of the 
request itself is spoofed to be the address of the attacker's victim. All the hosts receiving the 
PING request reply to this victim's address instead of the real sender's address. A single attacker 
sending hundreds or thousands of these PING messages per second can fill the victim's network 
link with ping replies, creating a bottleneck [20]. Figure 12 shows the Smurf attack. 

State 1: 
Victim machine/network 
information is confidential. 

Activity 1: 
NMAP sends SYN packets to 
all ports on victim. 

Activity 2: 
If victim port is open, it 
replies with a SYN/ACK. 
Else, it replies with a RST 
packet 

State 2: Confidentiality 
of the ports 
compromised. 

Observation A: 
TCP SYN packets received by all ports on 
the victim 

Observation B: 
All open ports on the victim send TCP 
SYN/ACK packets 
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a) Smurf Pre-Attack phase 

Pre attack activity 1:  Attacker sends a 
broadcast ICMP echo request to the 
intermediary network.(and other networks)

State 1:  The intermediary machines 
have broadcast ICMP echo response 
enabled 

State 2: The router configuration of 
the intermediary network does not 
disable ICMP broadcast echo requests. 

Pre attack activity 2:  The network
replies to the ICMP echo request.  
Attacker saves replying host addresses. 

Pre attack 
Phase 
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b) Smurf Attack phase 

Figure 12. Smurf Distributed DoS Attack 

Performance Impact 2: 
Victim’s router /intermediary 
network’s router experience 
high volume of ICMP traffic on 
port.  

Activity 2:  All intermediary 
machines receive the spoofed 
packet with the victim as the source 
IP address. 

Activity 3:  The intermediary 
machines construct ICMP echo 
responses to the request. 

Activity 4:  All the intermediary 
machines send ICMP echo reply 
packets to the victim. 

Performance Impact 1: 
Victim experiences traffic 
congestion on its input port by 
the flooding of ICMP  echo 
responses.  
There will be a increase in 
ICMP packets received. 
There will be a decrease in the 
TCP/IP packets sent/received 
on the interface. 

Activity 5:  The victim’s input port is 
flooded with ICMP echo responses 
from the intermediary machines 

Activity 1:  Attacker sends spoofed 
broadcast ICMP packet with source = 
victim’s IP and destination = 
intermediary network’s broadcast address

Observation A:  
One broadcast ICMP 
echo request packet 
on intermediary 
network 

Observation B:  
Increase in ICMP echo 
reply packets addressed to 
victim 

Observation D: 
Increased network 
utilization at the 
victim and router 

Observation C:  
More ICMP response packets 
than request packets in router 

Attack 
Phase 
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3.3.1.7 Database Insider 
 
 This attack is described in the attack classification section. Figure 13 shows this attack. 
 

 

Figure 13. Database Insider Attack 

State 1: User trust compromised 

Attack Phase 

Observation B: 
Reconnaissance queries 
by user 

Activity 1: Attacker probes for valuable 
data by initiating queries.  

Activity 0: Login to the database by a 
trusted user 

State 2: Availability compromised, by use 
of shared resources 

Performance 1: Timeliness 
compromised, by use of shared resources

Observation C: 
Data collection queries 
by user 

Activity 2: Attacker queries 
database/extracts valuable information. 

Observation A: 
Connection by DB user 
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3.3.1.8 BGP Route Isolation 
 

This attack is described in the attack classification section. Figure 14 shows this attack. 
 

a) BGP Route Isolation Pre-Attack Phase 

b) BGP Route Isolation Attack Phase 

Figure 14. BGP Route Isolation Attack 

State 0: BGP on victims AS assumes the 
route advertised by neighboring nodes are 
correct. 

Pre attack Phase 

Activity 0: Attacker generates malicious 
packets containing optimal BGP Attributes. 

Activity 1: Attacker spoofs the prefix and 
injects packets into the neighbor network. 

Attack Phase 

Observation A: 
Anomalous Origin 
Behavior 

Activity 0: Attacker generates malicious 
packets containing optimal BGP Attributes. 

State 1: Network receives 
prefix from the victim 

Observation B: 
Anomalous Path 
Behavior 

State 2: Network receives prefix 
announcements from victim and attacker 

Performance 1: Packet drop and 
destination unreachable at victim 

Observation C: 
Reachability Failures 
 

Observation D: 
Anomalous User 
Performance Behavior 
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3.3.2 Profile Table and DFC Relationships 
 
 The graphics created in the previous section allow us to view the observations associated 
with an attack at an abstract layer. For a more comprehensive and detailed look at the attacks, we 
create an attack profile based on the format given previously. Descriptions of these attacks are as 
in the previous section. Here we give the attack profiles, along with the relationship formula for 
our sample attacks. The attacks we are profiling are example attacks. The DFCs we extract are 
based on current knowledge and previous work. Future research will result in enhancing the 
features and characteristics of these indicators. 
 
3.3.2.1 Apache2 Attack 

 
This attack is explained in detail above, included as an example for the description of 

profile tables and DFC relationships. 
 

3.3.2.2 Dictionary attack 
 

Table 7. Dictionary Attack 
OBS Indicator Data Feature Characteristic

A l1
EWMA of Number of FTP log entries 
with keywords "login failure" Chi-squared distance Step change

B l1
Series of values from Password  field of 
login attempt failures in <log> Sequence pattern

Follows alphabetical order of words in 
dictionary. Ex: abacus, acme and 
adjective

C l1
Interarrival times of login attempt 
failures in <log> Temporal pattern of sequence Constant time

D l1
EWMA of similarity score of pairwise 
observations of Username  field of login 
attempt failures in FTP log

Chi-squared distance Step change
 

 
Observations: 
A Multiple login attempt failures 
B Subsequent password attempts follow dictionary pattern 
C Time between successive login attempts follows pattern 
D Successive attempts to login use same username 
Data dependent relationship: 
Let X: A set of FTP log entries on the victim relating to Login failure attempts. 
{xi , xj  |  A(xi), B(xi … i + k), C(xi , xj), D(xi , xj) } ∀ xi , xj  ∈ X, 
Where xi precedes xj, k is a threshold value to be determined. 
Attack formula: [A(ti…j , l1) ∧ B(ti…j , l1) ∧ C(ti…j , l1) ∧ D(ti…j, l1)], where i <j 
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3.3.2.3 Meteor FTP server DOS attack 
 

Table 8. Meteor FTP DOS Attack 
OBS Indicator Data Feature Characteristic

l1
Length of username  field in FTP request 
packet Individual observation Greater than a <threshold>

l2
Length of username  field in FTP request 
packet sent to victim Individual observation Greater than a <threshold>

l1a Windows application log Individual observation Has value "Access Violation at 
<memory> Program Terminated"

l1b FTP server log Individual observation Has value "server process 
terminated by operating system"

l1 EWMA of TCP packets/sec Chi-squared distance Step change

l2
EWMA of TCP packets/sec to FTP server's 
IP address Chi-squared distance Step change

l1
EWMA of Count of TCP RST packets from 
SRC_PORT  = <ftp port> Chi-squared distance Step change

l2
EWMA of Count of TCP RST packets from 
SRC_PORT  = <ftp port> from victim IP Chi-squared distance Step change

D

C

A

B

 
 
Observations: 
A Long username sent by user 
B FTP server termination from logs 
C Fall in network traffic to FTP server 
D FTP connection attempt failures 
Data dependent relationship 
There is no data dependent relationship amongst the observations for this attack 
Attack Formula:  
[A (ti, l1) | A(ti , l2)] → [B (t j , l1)] ∧  [C(t j…k, l1) | C(t j…k, l2)] ∧ [D (t j…k, l1) | D (t j…k, l2)] 
where i < j < k 
 
3.3.2.4 NetBus Trojan Attack 

 

Table 9. Netbus Trojan Attack 
OBS Indicator Data Feature Characteristic

Windows security log individual observation has value "New Objects added to registry"
Windows security log individual observation has value "New system service started"
List of open ports on the host from <log> individual observation <port> added to the list

List of open ports on the host from <log> individual observation <port> opened by an application not in the 
allowed list

l1 Port  field of TCP SYN packet individual observation <port>
l2 Port  field of TCP SYN packet sent to victim individual observation <port>

A

B

C

l1

l1

 
 
Observations: 
A New system service added to startup automatically 
B Port opened for connection by disallowed application on the host 
C Attempt to connect to the new port 
Data dependent relationship: 
There is no data dependent relationship amongst the observations for this attack 
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Attack formula: A (t i, l1) → B (t j, l1) ∧ [C (t k, l1) | C (t k, l2)] 
 
3.3.2.5 NMAP scanner 
 

Table 10. NMAP Scanner 
OBS Indicator Data Feature Characteristic

l1a
EWMA of number of ports receiving TCP SYN 
packets in time interval  t Chi-squared distance Step change

l2a
EWMA of number of ports receiving TCP SYN 
packets in time interval t on victim Chi-squared distance Step change

l1b
EWMA of number of ports receiving TCP RST 
packets in time interval  t Chi-squared distance Step change

l2b
EWMA of number of ports receiving TCP RST 
packets in time interval t at victim Chi-squared distance Step change

l1c
EWMA of Ratio of count of TCP SYN to ACK 
messages received Chi-squared distance Step change

l2c
EWMA of Ratio of count of TCP SYN to ACK 
messages to victim Chi-squared distance Step change

l1d
EWMA of ratio of number of ports sending 
SYN/ACK packets to ports sending RST packets Chi-squared distance Step change

l2d

EWMA of ratio of number of ports sending 
SYN/ACK packets to ports sending RST packets 
from victims IP

Chi-squared distance Step change

l1a
EWMA of number of ports sending TCP SYN/ACK 
packets in time interval  t Chi-squared distance Step change

l2a
EWMA of number of ports sending TCP SYN/ACK 
packets in time interval  t on victim Chi-squared distance Step change

l1b
EWMA of number of ports sending TCP RST 
packets in time interval  t Chi-squared distance Step change

l2b
EWMA of number of ports sending TCP RST 
packets in time interval  t on victim Chi-squared distance Step change

l1
EWMA of number of ports with TCP connections in 
time interval  t Chi-squared distance Step change

l2
EWMA of number of ports with TCP connections in 
time interval t at victim Chi-squared distance Step change

l1a
EWMA of number of ports receiving a string from 
NMAP list of probe strings in time interval t Chi-squared distance Step change

l2a

EWMA of number of ports receiving a string from 
NMAP list of probe strings at victim in time interval 
t

Chi-squared distance Step change

l1b
EWMA of number of ports sending a string from 
NMAP list of match strings in time t Chi-squared distance Step change

l2b EWMA of number of ports sending a string from 
NMAP list of match strings at victim in time inteval t

Chi-squared distance Step change

D

C

A

B

 
 
Observations: 
A TCP SYN packets received by all ports on the victim 
B All open ports on the victim send TCP SYN/ACK packets 
C TCP connection established at all open ports on the victim 
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D Subset of open ports receive one/more well known NMAP probes 
Data dependent relationship: 
There is no data dependence relationship among the list of NMAP observations 
Attack formula: 
[A (t i…j, l1) | A (t i…j , l2)] → [B(t i…j , l1) | B(t i…j , l2)], [C (t k…l, l1) | C (t k…l, l2)], 
[D (t k…l, l1) | D (t k…l, l2)], where i < j < k < l 
 
3.3.2.6 Smurf distributed DOS attack 

 

Table 11. Smurf DoS Attack 
OBS Indicator Data Feature Characteristic

A l3 Type  field of broadcast ICMP packet Individual observation Has value 8 (Echo request)

l1
EWMA of interarrival time of ICMP 
echo reply packets Chi-squared distance Step change

l2
EWMA of interarrival time of ICMP 
echo reply packets to the same DEST Chi-squared distance Step change

C l2
EWMA of the ratio of ICMP rsp/sec to 
req/sec at router Chi-squared distance Step change

l1
 EWMA of IP packets received/sec 
from performance log Chi-squared distance Step change

l2
EWMA of IP packets received/sec 
from the router's log Chi-squared distance Step change

B

D

 
 
Observations: 
A One broadcast ICMP echo request packet on intermediary network 
B Increase in ICMP echo reply packets addressed to victim 
C More ICMP response packets than request packets in router 
D Increased network utilization at the victim and router 
Data dependent relationship: 
There is no data dependence relationship among the list of NMAP observations 
Attack formula: A (ti, l3) → [B (tj , l1) | B (tj , l2)] ∧ C (tj , l2) → [D (tj , l1) | D (tj , l2)] 
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3.3.2.7 Database Insider 
 

Table 12. Database Insider Attack 
OBS Indicator Data Feature Characteristic

1 Time of connection and database user ID Individual observation Outside historical range

2 EWMA of duration of connection/session by user Chi-squared distance Step change

3 Number of tables outside historic range accessed 
by user within time interval t Individual observation Greater than <threshold>

4 EWMA of InterArrival Time of queries from the 
same user Chi-squared distance Step change

5 EWMA of queries selecting no data within time 
interval t (i.e., requested data not found) Chi-squared distance Step change

6 EWMA of size of query text Chi-squared distance Step change

7 EWMA of ratio of SELECT queries to other queries 
within time interval t Chi-squared distance Step change

8 EWMA of pairwise semantic distances between 
relations and attributes of successive queries Chi-squared distance Step change

9 EWMA of Number of queries using stored 
procedure in time interval t Chi-squared distance Step change

10 EWMA of Number of SQL constructs used in 
queries in time interval t Chi-squared distance Step change

11 Number of tables outside historic range accessed 
by user within time interval t Individual observation Below <threshold>

12 EWMA of Interarrival times of queries to same table Chi-squared distance Step change

13 EWMA of Number of queries using stored 
procedure in time interval t Chi-squared distance Step change

14 Ratio of rows retrieved during session to total rows 
in table Mean Increase

15 Ratio of columns retrieved during session to total 
columns in table Mean Increase

16 EWMA of Interarrival times of queries Chi-squared distance Step change

17 EWMA of pairwise semantic distances between 
relations and attributes of successive queries Chi-squared distance Step change

18 EWMA of number of SQL constructs Chi-squared distance Step change

B

A

C

 
 
Observations: 
A Connection by database user 
B Reconnaissance queries by user 
C Data collection queries by user 
Data dependent relationship: 
There is no data dependent relationship amongst the observations. 
Attack formula: A(ti…j, l1) → B(tk…l, l1) → C(tm…n, l1), where i <j<k<l<m<n 
 
3.3.2.8 BGP Route Isolation 
 

In this table we use AS with subscripts to indicate observations made at the AS points 
identified in the description of this attack above. 
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Table 13. BGP Route Isolation Attack 
OBS Indicator Data Feature Characteristic

L2, AS1-3 Prefix  field of BGP withdrawal Individual observation 
(withdrawal) Has unexpected value

L2, AS1-3 Prefix and AS number of BGP update Individual observation 
(update)

Has illegal/unknown prefix, 
AS number

L2, AS1-3 Origin change distribution Prefix change distribution Non-fitting distribution

L2, AS1, AS2 BGP withdrawal Individual observation 
(update) Expected path loss

L2, AS1, AS2 Path selection  made in BGP update Individual observation 
(update) Unexpected path selected

L2, AS1, AS2 Path change Path change distribution Non-fitting distribution

L2 Path selection  made in BGP update Individual observation 
(update) Sub-optimal path selected

L2, AS3 BGP update Individual observation 
(update) Illegal AS traffic transiting

L2, AS1, AS2, 
AS4

Traceroute data log Individual observation Has "network unreachable" 
message

L2, AS1, 
AS2,AS4 TCP connection state Connection results All new connections dropped 

(FIN/RST)

AS4, L1 EWMA of UDP packets/sec from logs Chi-squared distance Step change

AS4, L1
EWMA of TCP connections failed/sec 
from logs Chi-squared distance Step change

AS4, L1
EWMA of TCP connections reset/sec 
from logs Chi-squared distance Step change

D

A

B

C

 
 
Observations: 
A Anomalous Origin Behavior 
B Anomalous Path Behavior 
C Reachability Failures 
D Anomalous User Performance Behavior 
Data dependent relationship: 
There is no data dependent relationship among the observations 
Attack formula: 
A (t i…j, l2) | A (t i…j, AS 1..3) → B (t k…l, l 2) | B (t k…l, AS 1...3) → C(tm…n , l 2) | C(tm…n , AS 1,2,4) ∧ 
D(tm…n , l1) | D(tm…n , AS 4) 
 
3.4 Summary 
 

In this section we have outlined our work to catalogue attacks on computer and network 
systems. We use these tools to design sensor models for cyber attacks. In the next section we use 
this knowledge of cyber attacks and conduct analysis to discover characteristics of each the 
observable points of cyber attacks and noise. 
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4. Characteristics of Cyber Signal and Noise 
 
The cyber signal detection approach engages in the scientific discovery of DFCs for 

cyber signal (attack data) and noise (normal data). We use attack profiling and data analysis 
techniques to generalize the DFCs that exist in cyber signal and noise data. We also leverage 
well-established signal detection models in the physical space (e.g., radar signal detection), and 
verify them in the cyber space. With this foundation of information, we can build cyber signal 
detection models that incorporate the characteristics of both cyber signals and noise. This enables 
us to take the least amount of relevant data necessary to achieve detection accuracy and 
efficiency. The cyber signal detection approach considers not only activity data, but also state 
and performance data along cause-effect chains of cyber attacks on computers and networks. We 
aim to achieve the detection adequacy lacking in existing intrusion detection systems. 

To build a cyber signal detection model for detecting cyber attacks on computer and 
network systems, we need to obtain an understanding of attack and normal data characteristics; 
otherwise, we cannot have full confidence in detection accuracy, and we cannot achieve data 
relevancy and have detection efficiency. With knowledge of attack and normal data (cyber signal 
and noise) characteristics, we can easily leverage signal detection algorithms to build models if 
discovered cyber signal and noise characteristics also appear in models of the physical domain; 
or we can easily build new signal detection models using the methodologies of model building in 
the physical domain if discovered characteristics are not found in the physical domain. 

In this section, we provide descriptions, observation points and DFC tables for the six 
attacks and one worm investigated in this study. We then show an example of generalizations of 
observations across attacks. Next we provide an overview of signal detection in the physical 
space including a literature review, summary of our findings, and mapping the physical space to 
cyber space. 

The remaining sections outline experiments and results for discovering cyber signal 
characteristics. We describe the simulation and data collection of the six attacks (EZPublish 
Confidentiality, NMAP Scanner, Netbus Trojan, Meteor FTP, IRC Chat Server Abuse and ARP 
Poison) and one worm (Sobig) in our study. Next we give the results of our analysis to describe 
cyber attack and noise characteristics and finally, conclude this section. 

 
4.1. DFC for Attacks/Worm in this Section 
  

For this study we experimented with six attacks and one worm. Three of these attacks are 
described previously in this report: NMAP Scanner, Netbus Trojan and Meteor FTP. In this 
section, we present the other three attacks and worm: EZPublish, IRC Chat, ARP Poison and 
Sobig. We give each attack’s associated list of observation points and DFC table. For an in depth 
look at the topics covered in this section, we refer to [21-24]. 
 
4.1.1 EZPublish Confidentiality Attack 

 
We describe attacks as a series of observation points. For example, Table 14 shows the 

observation points for the EZPublish attack. 
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Table 14. EZPublish Observation Points 

Observable point Observation 
A File from restricted directory accessed 
B File with system related extension accessed 

 
We define each observation point in terms of the data under consideration and its feature 

and characteristic to distinguish attacks from normal scenarios [21]. Table 15 shows the DFC for 
the EZPublish attack [24]. 

 

Table 15. EZPublish DFC 

OBS Location Data Feature Characteristic 

L1 Filename of HTTP GET request Individual 
observation 

String match with 
settings A 

L2 Filename of HTTP GET request to 
host 

Individual 
observation 

String match with 
settings 

L1 Filename of HTTP GET request Individual 
observation 

String match with 
.ini B 

L2 Filename of HTTP GET request to 
host 

Individual 
observation 

String match with 
.ini 

 
 In the first column of Table 15, we see the letter of the observation that each DFC 
corresponds to. In the next column, we see the location where the data is collected, L1 is the 
victim (host) and L2 is a router in the victim’s network. The third column describes the actual 
data we need to collect for this observation point. The fourth column is the feature we need to 
extract from this data and the last column is the characteristic on the feature, which identifies this 
observation point. 
 
4.1.2 IRC Chat Server Abuse 
 
 Table 16 gives the observation points for the IRC Chat Server Abuse attack. 
 

Table 16. IRC Chat Observation Points 

Point Observation 
A Distrusted applications installed on client and 

server 
B New service starts on server machine 
C New port opened for service on server 
D Increase in TCP connections at server 
E Ping packets from clients to server at regular 

intervals 
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 Table 17 gives the DFC for IRC Chat. 
 

Table 17. IRC Chat DFC 

Obs Location Data Feature Characteristic 

L1 Application log Individual entry 
Has value “IRC 
chat server 
installed” A 

L2 Application log Individual entry 
Has value “IRC 
chat client 
installed” 

B L1 Security log Individual entry Has value “ new 
service started” 

C L1 Open ports on system List of ports New port added 

L1 TCP connections/sec  at 
server 

Exponentially 
weighted moving 
average 

Step increase 

D 

L3 TCP connections/sec  
with DEST = server IP 

Exponentially 
weighted moving 
average 

Step increase 

L1 ICMP requests/sec at 
server 

Exponentially 
weighted moving 
average 

Step increase 

E 

L3 ICMP requests/sec with 
DEST  = server IP 

Exponentially 
weighted moving 
average 

Step increase 

 
4.1.3 ARP Poison 
 
 Table 18 gives the observation points for the ARP Poison attack.  Table 19gives the 
DFC for ARP Poison. 
 

Table 18. ARP Poison Observation Points 

Observation 
point Observation 

A Updates received from different machines do not 
match. 

B Victim is unable to reach destination 
C Outbound Network traffic reduces 
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Table 19. ARP Poison DFC 

OBS Location Data Feature Characteristic 

L1 Target HA field of ARP Reply 
packets received 

String 
Comparison of 
values 

All updates do 
not have the 
same value A 

L2 Target HA field of ARP Reply 
packets received 

String 
Comparison of 
values 

All updates do 
not have the 
same value 

L1 Network interface:packet outbound 
errors field in performance log 

Exponentially 
weighted 
moving average 

Step increase 

B 

L2 

DEST MAC field of Ethernet 
frames 
- and - 
Contents of ARP table 

String 
comparison of 
values 

Value in field 
does not match 
any entries from 
ARP table 

C L1 Network interface: Bytes set/sec 
field from performance log 

Exponentially 
weighted 
moving average 

Step decrease 

 
4.1.4 Sobig Worm 
 Table 20 gives the observation points for the Sobig Worm.  Table 21 gives the DFC for 
Sobig. In The location column, L4 refers to the intermediate mail server involved in the attack. 
 

Table 20. Sobig Observation Points 

Observable 
Point Observation 

A E-mail infected with Sobig worm received in user’s mailbox 
B New process, the Sobig worm, started by user 
C New files created by worm 
D New values added to the startup keys of the registry 

E 
New worm process starts and original worm process is 
terminated 

F New event created 
G New threads created 
H Higher CPU utilization as threads search for e-mail addresses 

I 
Higher file system activity as threads search for e-mail 
addresses 

J Increased network activity as threads send out infected e-mails 
K Mail activity at mail server as infected e-mails arrives 
L UDP packets sent to update servers  
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Table 21. Sobig DFC 

OBS Location Data Feature Characteristic 

A L1 

E-mail contained in the user’s mailbox Individual 
observation 

9 possible subject 
lines, 9 possible 
attachment file 
names, and 2 
possible body lines 

B L1 Name of new process running Individual 
observation 

9 possible names 

Filename of newly created file Individual 
observation 

“%Windir% 
\winppr32.exe” C L1 Filename of newly created file Individual 

observation 
“%Windir% 
\winstt32.dat” 

Value of data added to registry key 
HKEY_LOCAL_MACHINE\SOFTWARE 
   \Microsoft\Windows\CurrentVersion\Run 

Individual 
observation 

“TrayX”= 
“%Windir% 
\winppr32.exe 
/sinc” D L1 Value of data added to registry key 

HKEY_LOCAL_MACHINE\SOFTWARE\
   Microsoft\Windows\CurrentVersion\Run 

Individual 
observation 

“TrayX”= 
“%Windir% 
\winppr32.exe 
/sinc” 

Name of old process terminated Individual 
observation 

9 possible names 

E L1 Name of new process running Individual 
observation 

“winppr32.exe” 

F L1 Value of event created Individual 
observation 

“TrayX” 

G L1 9 new threads created Individual 
observation 

Thread count 
increment 

H L1 Comparatively high CPU utilization by 
winppr32.exe 

Mean Increase 

I L1 Comparatively high file system utilization 
by winppr32.exe 

Mean Increase 

L1 IP packets sent/sec from performance log EWMA Step increase  

L2 IP packets received/sec and sent/sec from 
the router’s log 

EWMA Step increase  
J 

L4 IP packets received/sec from performance 
log 

EWMA Step increase  

K L4 E-mails received/sec EWMA Step increase  

L L1 Destination IP addresses and port used for 
20 UDP packets sent 

Individual 
observation 

20 IP addresses 
over port 8998  
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4.2 DFC Generalization from Profiling 
 
 The DFC tables from attack profiling, along with additional attack profiles from [24], 
give us a starting point for generalizing DFC for cyber attacks. Table 22 shows a sample of some 
generalizations made on these attack profiles. 
 

Table 22. Generalized DFC from attack profiles [24] 

Generalized Description Attack 
 

Attack Specific Description 
 

The length of the buffer to hold the 
packet header Apache attack HTTP packets with large headers 

Apache attack Multiple HTTP packets requesting 
same file Total similarity score from string 

comparisons in all the fields of pair 
wise packets UDP storm Identical packets sent/received by 

victim machines 
The access ratio of common files to 

uncommon files Apache attack Multiple HTTP packets requesting 
same file 

Intensity ratio of incoming packets to 
outgoing packets Apache attack More HTTP requests arrive than are 

serviced 

Nmap scanner TCP SYN packets received by all 
ports on the victim 

Netbus Trojan 
attack 

Attempt to connect to the new port 
on victim 

Smurf attack Increase in ICMP echo reply 
packets to victim 

Access ratio of common to 
uncommon ports 

IRC chat server 
abuse 

New port opened for service on 
server 

Same change in specific 
performance object on two/more 

hosts on the network 
UDP storm Increased network traffic by 

constant amount on both machines 

Frequency ratio of common entries 
to uncommon entries in the 
Windows system/ security/ 

application log 

Dictionary 
attack Multiple login failures 

Meteor FTP 
attack Fall in network traffic to ftp server Ratio of incoming to outgoing traffic 

volume per second Smurf attack Increased incoming traffic 
Netbus Trojan 

attack 
New system service added to 

startup automatically 
String in system/ security/ 

application log indicating start/ end 
of host /network application without 

normal procedure Half life attack Client application terminated 
abnormally 

File from restricted directory EZPublish File from settings directory of 
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accessed by non administrative user EZPublish application is accessed 

File with system specific extension 
accessed by non administrative user EZPublish 

File with system specific extension 
is accessed by non administrative 

user 

Host connection to untrusted remote 
machine over the network Half life attack 

Half life client connects with 
untrusted half life server on the 

network 
Network data with code to open a 

new shell on the system Half life attack Response has code to open a new 
shell 

Multiple processes started by same 
parent process 

Process table 
attack 

Multiple calculator processes 
started by same user process 

Registry key edited by user without 
administrative privileges 

Yaga user to 
root attack 

Unauthorized registry edit/New file 
added 

Yaga user to 
root attack 

New user added, not by usrmgr 
service User added/removed to system by 

process other than usrmgr service Yaga user to 
root attack 

user removed, not by usrmgr 
service 

Sudden failure seen in using a 
system resource like network, files 

and memory 
ARP poison Victim is unable to reach 

destination 

 
 In Table 22, the first column generalizes the element that we monitor to detect an 
observable point of one or more attacks. The second column shows which attack profiles include 
this element, and the third column gives the attack specific observation for the element. By 
generalizing in this way, we can identify general attack elements that occur and investigate their 
frequencies to aid in developing sensors that can detect novel attacks. 
 
4.3 Signal Detection Models 

 
Once we have identified the DFC of a cyber attack signal, we need a model to detect it. 

To this aim, we leverage well-established signal detection models in the physical space (e.g., 
radar signal detection), and verify them in the cyber space. 

This section proceeds as follows. We first present a literature review of signal detection 
in the physical space. We then summarize the feature extraction methods and detection models 
discovered in our literature review. The section concludes with a subsection mapping physical 
space, signal detection concepts to cyber signal detection in the form of DFC generalization and 
analytical discovery through data mining and analysis techniques. 

 
4.3.1 Physical Space Literature Review 

 
We survey existing signal detection methods in the physical space to create a collection 

of signal detection models. The search focuses on literature published in the years 1995 to 2004 
(some literatures are unpublished). We find 163 papers from six different fields. This section 
describes the literature search and definitions of DFC and signal detection model used in this 
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study. The search includes six application areas and a theory area. Table 23 below summarizes 
the number of papers we review in each area. 

 

Table 23. Number of papers review in each area 

Area Total 
Biomedical & Health science 31 
Earthquake & Planetary science 25 
Economics, Finance, and Marketing Research 22 
Manufacturing and Quality Control 28 
Physical Signal Processing 39 
Theory 28 

Total 173 
 
We conduct the search using various keywords depending on the area. Table 24 gives 

examples of the keywords used for each area. 
 

Table 24. Summary of keywords used in literature search 
Area Key words used 
Biomedical & Health 
science 

Feature Extraction, Detection, Feature Selection, Hypothesis Testing, 
Noise Filtering, Pattern Recognition, Signal Detection, Signal Processing  
 

Earthquake & Planetary 
science 
 

Detection & Statistical, Detection, Fault Detection, Signal Detection  

Economics, Finance, 
and Marketing Research 
 

Detection & Statistical, Signal Extraction  

Manufacturing and 
Quality Control 
 

Fault Detection & Fault Signature, Fault Signature  

Physical Signal 
Processing 

Feature Detection & Statistical, Feature Extraction, Signal Detection, 
Detection & Statistical, Signal Extraction, Detection, Radar & Signal 
Detection, Radar & Statistical, Signal filtering, Data denoising 
 

Theory Data Fusion, Feature Extraction, Signal Detection  
 

 
We find that economics, finance, and marketing research focuses on time-series data, 

with the goal of estimating (or extracting) the signal. Hence, most papers in this area only discuss 
the estimation method, and hardly mention the testing method. 

Upon reviewing each paper, we extract the DFCs and signal detection model. Most 
papers contain all four elements but some provide only the DFC elements. We define these four 
elements below in the context of our literature search. These definitions reiterate and expand the 
definitions we give for attack profiling. 

We define data as any variable of interest. For example, the data for detecting an 
underground water signal is the underground water sound. Data for each signal detection model 
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and attack type can be different. A special structure, form, or other attraction of the data is a 
feature of the data. We can extract features via data transformation. Examples of feature range 
from simple transformations such as raw data itself (no transformation required), mean, variance, 
distribution function, any linear combination, or ratio, to more complex transformations such as 
time series model, principal component function, Fourier transforms, or wavelet transforms. 
Each feature has a unique characteristic, which is useful in detecting a signal. For instance, 
characteristics of the mean can be a step or steady change. The characteristics that we wish to 
detect in data may not be the same as characteristic of feature. For example, step change in 
correlation coefficient implies a change in the data trend. Once DFC is defined a signal detection 
model can be designed to detect a particular signal. Generally, a signal detection model can be 
thought of as a process of making a decision – deciding whether or not the signal is present. 
Table 25 gives an illustration of mapping physical signal detection into DFC and signal detection 
model. Note that the characteristic shown in this table is a characteristic of the feature. Thus the 
signal detection model is designed to detect the feature characteristic [25]. 

 

Table 25. An example mapping physical signal detection into DFC and model. 

Data Feature Characteristics Signal Detection Model 
Variable(s) of 

Interest 
EX Underwater 

sound signal  

Vector of summary 
measures of selected 
wavelet coefficients 

EX Vector of mean 
sum of squares 
corresponding to 
high frequencies.  

 

Step change in 
summary 
measures of 
selected wavelet 
coefficients 

An adaptive model using 
recursive kernel 
estimation of joint 
distribution of sum of 
squares of wavelet 
coefficients. Any 
outliers from this 
kernel estimation are 
flagged as signal.  

 
 
4.3.2 Physical Space Signal Detection Models 

 
In the physical space, we find that the steps in detecting a signal are as follows. Firstly, 

data are processed by normalizing, scaling, or screening. Next the processed data are transformed 
to a feature. The transformation and feature are selected such that the signal is amplified. Hence 
the desired characteristic of signal can be detected easier and faster. Finally, a signal detection 
model is applied to the feature extracted from the processed data. Figure 15 illustrates these 
steps. 
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Raw Data 
Data 

Processing 

Feature 
Extraction 

Processed 
Data 

Decision 
Detection 

Model Features 
 

Figure 15. Common procedures in signal detection 
 
There are many transformation methods available. Each transformation method is 

appropriate for a different kind of data and results in a different type of feature. Based on the 
literature search, transformation methods can be grouped into six categories: no transformation, 
simple transformation, regression based transformation, multivariate technique, transformation to 
frequency domain, and statistical learning method. Table 26 summarizes these transformation 
methods, features, and characteristics. 

 

Table 26. List of all transformation methods, correspondent features, and characteristic. 

Type of 
Transform

ation 
Feature Characteristic of Signal that we wish to detect 

Any change from the template 
Any change in the distribution 
Change in absorption rate 
Change in causality relationship 
Change in clusters of data 
Change in correlation pattern in the data 
Change in data sequence 
Change in distribution (including any parameter change) 
Change in distribution parameter (e.g. mean, variance, 
scale parameter, etc.) 
Change in magnitude of signal 
Change in mean or change in pattern (i.e. change in slope 
or signal waveform) 
Change in parameter of autoregressive model 
Change in parameter of IMA model 
Change in spatial correlation pattern in the data 
Change in trend 
Change of slope 
Intermittent Sine Wave in the data sequence 
Single spike in the data sequence 

1.) None Data itself 

Step change in likelihood function 
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Step change in membership function 
Step change in probability number of the presence of 
signal 
Step change in probability of the presence of signal 
Step change in belief mass function 
Step change in count of events (distribution mean) 
Step change in distribution mean 
Step change in mean 
Step change in parameter of interest 
Step change in probability of success 
Step change in time between events (distribution mean) 

Absolute difference Any change in the data 
Autocorrelation 
function (ACF) Change in autocorrelation pattern in the data 
Coefficient from 
steerable pyramid Change in grey level of image data 
Conditional 
intensity Change in conditional intensity  
Correlation 
coefficient Change in correlation pattern in the data 
Correlation 
function Change in correlation pattern in the data 
Data itself  
Descriptor Change in clusters of data 
Filtered data from 
Sum-box technique Change in filtered data 
First nine moments Change in clusters of data 
Four different 
weight sums Change in grey level of image data 
Geometric mean Step change in mean 
Inovention Change in process state 
Kendall Statistic Change in trend 
Knox Statistic Steady change on mean of Poisson distribution 
Likelihood value Change in pdf. 
Low- and high- 
pass Change in clusters of data 
Mahalanobis 
Distance Change from normal behavior 

2.) Simple 
Transform-
ation 

  Change in clusters of data 
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Maximum 
Likelihood 
Estimate of signal 
shape and 
amplitude Change in shape or amplitude of the signal 
Mean Change in trend 
  Step change in mean 
Mean and Variance Change in location or spread of the data 
Mean of smoothed 
data Step change in mean 
Median Change in median 
Normalization of 
Low- and high- 
pass Change in clusters of data 
Normalization of 
Time difference 
and integration of 
data Change in clusters of data 
Normalization of 
high order statistic Change in clusters of data 
Normalized 
correlation function Change in correlation pattern in the data 
Numbers of right 
and left triples Change in cycle pattern in data 
Sequential 
Probability Ratio 
Test (SPRT) Step change in mean of input or output 
Signal to noise ratio Change in magnitude of signal relative to noise 
Spearman 
Correlation 
coefficient Change in trend 
Tango statistic Change in clusters of data 
Third and four 
order statistic 

Change in skewness and peakiness of data (or change in 
distribution shape) 

Third cumulant Change in the skewness in data 
Third order statistic Any change to non-linear signal 
Time difference 
and integration of 
data Change in clusters of data 
Transformed data Change in grey level of image data 



 

 59

Amplitude 
modulation 
estimate Spike in the output mean 
  Steady change in output mean 
  Step change in the output mean 
Differencing-
stationary 
parameter Any change in seasonality parameter 
Fitted value from 
time series model Change in underlying model 
Global factor 
estimate Steady change in mean 
Margin of error of 
slope Change in trend 
Predicted value Steady change in mean 
Prediction error Change in underlying model 
Regression 
coefficient Change in correlation pattern in the data 
  Change in underlying distribution 
  Steady change in mean 
Trend estimate Steady change in mean 
Trend or Cycle 
estimate Steady change in mean 

3.) 
Regression-
based 
method 

Weighted sum of 
prediction error Change in underlying model 
Ai(k) index Change in subspace spanned by the first m PCs 
Contribution of 
Principal 
Component (PC) Change in correlation pattern in the data 
Dissimilarity index Change in correlation pattern in the data 
Geometric vector Change in correlation pattern in the data 
Independent 
Component Change in correlation pattern in the data 
Latent Variable Change in correlation pattern in the data 
Multiple 
Correlation 
Coefficient (MC) Change in correlation pattern in the data 
Principal 
Component (PC) Change in correlation pattern in the data 

4.) Multi-
variate 
Method 

Q statistic or 
Square Prediction 
Error Change in correlation pattern in the data 
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Reduced fault 
signatures Change in clusters of data 
Residual Change in correlation pattern in the data 
Singular value Change in clusters of data 
T-sq Change in correlation pattern in the data 
T-sq and Q-statistic Change in correlation pattern in the data 
Coefficient of 
periodic signal Change in cycle pattern in data 
Expansion 
coefficient Change in underlying model 
Harr coefficients Change in data frequency  
Holder's exponent Change in mean 
Moving average Change in mean 
Principal 
component of 
wavelet coefficient Change in correlation pattern in the data 
Probability density 
of residual Change in mean 
Quotients which are 
the short- and long-
term averages Change in mean 
Singular exponents Change in mean 
Sum square of error Any change in high frequency band 
Time-averaged 
wavelet spectrum Change in mean 
Transformed data Change in mean 
  Change in mean of transformed data 
  Change in number of signals 
Wavelet 
coefficients Change in data frequency  
  Change in data mean 
  Change in mean 

5.) 
Transform 
to 
Frequency 
domain 

Wavelet packet 
node Change in mean 
Selected variables Change in correlation pattern in the data 6.) 

Statistical 
Learning 
method Total Avidity Change in clusters of data 
 

While there are six categories of transformation methods, there are only two detection 
models. The detection models are threshold method and rule based method. A discussion of 
transformation method and detection model is given below.
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Transformation method or Feature Extraction 
No transformation use data itself (or processed data) as the feature and input to the signal 

detection model. 
Simple transformation includes averaging. moving averaging, transforming to variance, 

higher order statistics, or correlation coefficient, filtering technique, and any simple 
transformation. Output from transformation is considered the feature. For example, 
features from simple transformation include mean, moving average, (Pearson) 
correlation coefficient, third or fourth order statistic, or filtered data. 

Regression based transformation is used when the data consists of independent (x) and 
dependent variables (y). Common used regression based methods are least square 
model (OLS), generalized least square model (GLS), generalized linear model 
(GLM), spline regression, LOESS or non-parametric regression. This category also 
includes time series model such as autoregressive model (AR), autoregressive moving 
average (ARMA), or autoregressive integrated moving average (ARIMA). Regression 
based transformation can extract fitted (or predicted) value, residual, regression 
coefficients.  

Multivariate technique is defined as transformation technique that considers all variables 
of interest simultaneously. Principal component analysis (PCA), independent 
component analysis (ICA), and partial least square (PLS) are grouped in this 
category. PCA and ICA are generally used when there is no dependent variable (y) 
while PLS is used with the presence of dependent variable (y). Possible features from 
these techniques are principal components, loading, and reduced data. Note that when 
reduced data is used, residual is another potential feature. When PLS is used the 
potential features also include those of regression based transformation.  

Transformation to frequency domain usually appropriate when data have time series 
pattern or time domain do not reveal any useful information. It is often used in 
economics, finance, and marketing research. Methods include Fourier transform, 
wavelet transform, and Laplace transform. Potential features from this transformation 
are transformed data, reduced data, transform coefficients, and residuals (if reduced 
data is used).  

Statistical learning method acts as transformation and signal detection in one algorithm. 
In general, data are used as an input to the model and the output from the algorithm is 
the decision. This method is computer intensive and involves in adjusting algorithm 
parameters. Hence it requires training data for fine tuning the detection model. 
Commonly used statistical learning methods are neural network, immune-81, and 
genetic algorithm.  

 
Signal detection model 

1. Threshold method consists of three classes: classical approach, Bayesian approach, 
and statistical learning method. The basic concept is to threshold on the feature or test 
statistic. If the feature value or test statistic is beyond the threshold value then the 
model signals an alarm. Usually threshold value is set to reduce the false alarm rate 
(or probability of type I error).  



 

 62

a. Classical approach is the conventional statistical hypothesis testing. The result 
from hypothesis testing is either yes or no. Examples of classical approach 
include t-test, F-test, ANOVA, (general) likelihood ratio test, χ2 test, 
discrimination analysis, and change point detection. An adaptive version of these 
methods is considered as the classical approach as well. The adaptive method is 
used when the threshold value or calculation of test statistic is regularly updated 
using new observed values.  

b. Bayesian approach can result more than yes or no type of answer. The concept is 
the same as classical approach but, instead of assuming the underlying model, 
Bayesian approach assume underlying conditional probability. Thus the threshold 
value is usually a function of conditional probability. Examples of Bayesian 
approach are Bayesian detector, Dempster-Schafer, Fuzzy algorithm, and 
association rule based on prior algorithm.  

c. Statistical Learning method, like Bayesian approach, can result more than yes or 
no type of answer. Threshold value is in function of some kinds of similarity 
measure (i.e., error function, distance function, entropy, or loss function). 
Threshold value is usually set to either minimize false alarm rate or maximize 
detection rate or a combination of both. Hence statistical learning methods usually 
have an objective function. The threshold value is the value that will maximize 
that objective function. 

2. Rule based method is simply a combination of threshold method. It involves “if 
then”. For instance, a detection model alerts if number of alarm is greater than some 
threshold value where the alarm occurs when some test statistic (or feature) is greater 
than another threshold value.  

 
4.3.3 Mapping Physical Space to Cyber Space 

 
This section describes how we use aspects of signal detection from the physical space in 

designing a model for cyber space signal detection. Table 25 illustrates three DFC elements 
along with a signal detection model. To map this table to the cyber space, consider raw data (e.g., 
network traffic data) collected from computers and networks. The raw data goes through 
processing to obtain the desired data (e.g., the intensity ratio of packets for the web server to all 
packets) from which the feature is extracted using a feature extraction method (e.g., an arithmetic 
calculation of the sample average) [21]. Along with DFC, a corresponding signal detection 
model incorporates the characteristics of both cyber signal and noise, and monitors the feature to 
detect characteristics and decide if a cyber signal is present [21]. Table 27 illustrates an example 
of DFC and associated signal detection model in the physical space for the radar detection of a 
hostile object in the air, and in cyber space for the detection of the DoS attack from our previous 
example. 
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Table 27. Examples of DFCs and signal detection models [21] 

Element Physical Space Cyber Space 
Data Radar image data Packet intensity ratio 
Feature Shape & size of an object Sample average (mean) 
Characteristic Shape is square & size is large Step change 
Signal Detection Model A rule-based model: if shape 

is square & size is large, then 
signal  

Cuscore model for step change

 
If we consider attack data as a signal to detect, and normal use data as noise mixed in 

with the signal in cyber space, then there is a mapping between cyber attack detection and signal 
detection in the physical space (e.g. radar and sound signal detection). Table 27 uses the cuscore 
model for step change to detect a signal in cyber space. Unlike existing techniques for cyber 
attack detection that rely on the model of only one element (signal or noise) in the monitored 
data, existing techniques for signal detection in the physical space often employ models that 
incorporate characteristics of both signal and noise, that is, all elements that exist and are mixed 
together in the monitored data [4,25-29]. 

We use the cuscore model to detect a step change in random noise that fluctuates around 
the level of T. The following noise and signal models are considered [4]: 

Noise model: 0tt aTy +=        (1) 
Signal model: tt aTy ++= δ        (2) 

where T is the target value, at0 and at are white noise and δ is the signal. The cuscore statistic is 
then defined as [4]: 
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where rt is the Detector (rate of change of background noise). 
This cuscore model is sensitive to detecting a step change signal buried in random noise. 

For any random variable, after we take account of the first part we will always have the second 
part of random white noise to account for the randomness of the variable. The second part is the 
standard form of mathematical modeling. Box and Luceno provide other cuscore models that are 
constructed to detect: a sine wave, slope change and single spike signal buried in the random 
noise of equation (1), and parameter change signals with the noise of a first-order autoregressive 
time series model or the nonstationary disturbance noise of an (IMA) time series model [4]. 
Many signal detection techniques in the physical space, including low-pass and high-pass filters, 
use frequency bands to characterize and differentiate signal and noise to perform signal filtering 
or detection accordingly [27]. 

The attack-norm separation approach consists of the following three steps in order to 
detect an attack: 

1) Define models of cyber signal and noise 
2) Filter out noise from mixed data, using the cyber noise model 
3) Identify the cyber signal in the remaining data, using the cyber signal model 

For example, in the cuscore model equations (1) and (2) carry out Step 1 of the attack-
norm separation approach by defining the noise model and the signal model. The signal model 
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indicates that the step change signal is added to the noise. Hence, it is an additive signal model. 
Note that not all signals are additive. Some signals may distort the noise in other ways than 
simply adding a signal to the noise. Steps 2 and 3 of the attack-norm separation are embedded in 
equation (3) 

Previously we described how we generalize observations across attacks. Here, we extend 
that to identify detailed aspects of the generalized cyber attack variables, including data, feature, 
transformation method for feature extraction, characteristic of feature and signal detection 
model. Table 28 gives an example of some data generalizations. 

 

Table 28. Examples of generalized data from existing attack profiles 

Type of 
Data Data Feature Transformation 

Method 
Characteristic 

of Feature 
Signal Detection 

Model 
Single 
Source 

Raw data: header 
fields of each packet 
Computed variable: 
total similarity score 
from comparisons of 
all fields between 
consecutive packets 

No 
transformation 

N/A Step change 1) t-test using 
observations over 
time 
2) cuscore for step 
change 

Single 
Source 

Raw data: a string 
indicating the start or 
termination of a host 
or network application 
(e.g., FTP, www) or 
user (e.g., system 
administrator) in the 
Windows registry, 
security, system and 
application log 

No 
transformation 

N/A Special string 
value 

String match 

Multiple 
Source 
Intensity 
Measures 

Raw data: a variable 
measuring incoming 
and outgoing traffic 
volume per second  

No 
transformation 

N/A Step change 1) t-test using 
observations over 
time 
2) cuscore for step 
change 

Multiple 
Source 
Intensity 
Measures 

Raw data: a variable 
measuring incoming 
and outgoing traffic 
volume per second 

Wavelet 
coefficients 

Haar and 
Complex 
Wavelet analysis 

Multivariate 
pattern 
difference 
between signal 
and noise 

1) ANOVA 
2) hierarchical 
cluster 
3) decision trees 
4) a table of 
wavelet coefficient 
vectors, all using 
vectors of wavelet 
coefficients from 
multiple signal and 
noise sessions 

 
The first column in Table 28 groups the variables based on data source and measure of 

interest. Data sources here are single or multiple. For multiple data sources, we can look at 
different measures, such as intensity measures (time-driven), activity pattern measures (event 
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driven) and activity-state-performance interaction measures. The examples in Table 28 cover 
single source and multiple source w/intensity measure data. The remaining columns give 
examples from attacks of data, feature, transformation method, characteristic and signal detection 
model. 
 Considering Figure 15, step 1 takes raw data, step 2 processes the data (centered, scaled, 
screened, etc.) to obtain the variable in step 3 (processed data). Steps 2 and 3 are optional 
depending on whether or not the variable of interest requires pre-processing of the raw data. In 
step 4 we extract a feature by transforming the data variable using one of the feature extraction 
methods given in Table 26 to obtain the desired feature in step 5. At this point, we need to use a 
detection model which looks for a certain characteristic on the feature. In step 6 we consider one 
of the signal detection models given previously. Finally, in step 7 we make a decision based on 
the outcome of step 6. Figure 16 gives an example of using this 7 step process to detect a signal 
in the physical space. This example does not require the optional stages of transforming raw data 
into desired variable. Thus, Figure 16 shows the details for steps 1 and 4-7 for this example. 
 

 
Figure 16. Example of the steps in detecting a signal in the physical space 

 
 We can use the same procedure for detecting a signal in cyber space.  Table 29 gives a 
sample of commonly used feature extraction methods from the physical domain that we can 
consider for use in the cyber space. This list is a created from Table 26 and extends each row to 
include the corresponding data type, underlying model and signal detection model. 

 

Raw Data =  
Underwater 

data 

Feature Extraction = 
Discrete Wavelet 
Transform (DWT) 

Decision: 
Any outliers from the 
kernel estimate is flag 

as the signal 

Detection Model =  
Recursive joint 

distribution kernel 
estimate of sum 

squares of selected 
wavelet coefficients

 

Features =  
Sum squares of 

selected wavelets 
coefficients 
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Table 29. Commonly used feature extraction methods from the physical domain 

Data 
Type Underlying Model Feature(s) Transformation 

Method
Charactersitic 

of Feature

Signal 
Detection 

Model

N/A Correlation 
coefficient

Pearson's 
correlation 
coefficient

Step change MAROC

N/A
Linear 

discrimination 
model

N/A

Multi 
dimensional 

heuristic 
method

N/A
Quadratic 

discrimination 
model

N/A Mean Sample average Step change T-test

y = b0 + b1x Step change Mann-Kendall 
Statistic

Mann-
Whitney 
Statistic
T-test

EWMA: Zs = lSum(1-l)s-tX(t) Fitted value
Time series 
model (not 
specified)

Step change Prediction 
interval

logit[p(y)] = -c + dx Regression 
coefficient

Genearlized 
Linear Model Step change T-test

OLS model: Yj = a + bj + ej Margin of 
error of slope Step change T-test

Seasonal Model
Yijk = m + Ti + Mj + eijk

Regression 
coefficient Step change T-test

Y = Xb + e Regression 
coefficient

Any regression 
technique Step change T-test

jh(B)(ht - m) = qh(B)bt Regression 
coefficient ARMA model Step change T-test

f(x,w) = w y(x) + b Fitted value
Adaptive 

support vector 
regression

Step change

Confidence 
interval on 
predicted 

value

Y = FQ + Y Prediction 
error

Bayesian 
Regression Step change

Confidence 
interval on 

predicted error

Step change

R
eg
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ss
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n 

ba
se

d 
m

et
ho

d
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m
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e 
Tr

an
sf

or
m

at
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n

Any

Any

Time 
series

Input 
and 

output Least squares 
regression

Trend 
estiamte

Least squares 
regression

Mahalanobis 
Distance

Mahalanobis 
Distance

 
 
Our approach includes 3 basic stages: 
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1. Identifying specific data to collect corresponding to the specified raw data derived 
from attack profiles. This stage includes defining the specific data sources. Table 30 
illustrates the identification process 

 

Table 30. Defining variables for associated data sources 

Type of data Data Identified source of data 

Single source Raw data: header fields of 
each packet  

IP packets – source 
address/destination 
address packets, port 
number 

Multiple source 
Intensity 
measure  

Raw data: a variable 
measuring incoming and 
outgoing traffic volume per 
second 

IP packets per second  

 
2. Extracting data in the log files collected from each attack using specific programming 

tools and statistical packages. The identified data from each log file need to be 
transformed into an analyzable form (variable) to run in the tests defined in the 
analysis stage and to extract some useful information from them. Table 31 illustrates 
the extraction process: 

 

Table 31. Extracting variables 

Identified source of data  Extracted variable for analysis  

TCP port number  Similarity score of port numbers by 
comparing consecutive packets  

IP packets per second  IP packets per second from the 
performance log file extracted  
using Statistica.  

 
3. Analyzing the extracted variables. Two methods are defined for analyzing the 

variables (Table 32): 
• Directly analyzing the extracted variable without any transformation using T Test 

to find out the step change in data 
• Transforming the extracted variable using wavelet transform and finding the 

pattern change in data between signal and noise. Haar and Morlet wavelet 
transformation methods are used for this. 
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Table 32. Analyzing extracted variables 

Extracted variable for 
analysis 

Transformation 
method 

Signal detection 
model 

Similarity score of port 
numbers by comparing 
consecutive packets  

No transformation  T Test using 
observations over time  

IP packets per second 
from performance log 
file  

Both no transformation 
and wavelet transform  

T Test, ANOVA, a 
table of wavelet 
coefficients  

 
 The verification process is outlined in Figure 17. In this figure, step 1 is the raw data, step 
2 corresponds to stage 1 above, step 3 corresponds to stage 2 above, and steps 4 and 5 
correspond to stage 3 above. In this way, we are able to verify the physical signal detection 
models for detecting cyber signals. 
 

 
Figure 17. Example of verification process 

 
4.4 Attack Simulation and Data Collection 

 
This section explains attack simulation and associated data collection carried out in the 

project. It is divided into three subsections. The first explains concepts that are common across 
all attack simulations. The second explains attack-specific information on simulation and data 
collection. The third describes the worm simulation. This section is a result of the simulation of 
selected attacks and worm, and covers all relevant implementation details. 

Raw data 
Destination port in 
the TCP header of 
the incoming packet 
to a host 

Identified data 
TCP destination port 
number in each row in 
the Windump file 

Extracted variable 
Access intensity (access 
count per second) to more 
common ports 

Transformation 
(Feature Extraction) 

Both no transformation and 
wavelet transform 

Detection model 
T Test, table of wavelet 
coefficients, ANOVA 

ANALYSIS 
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4.4.1 Setup Common to Attacks 
 

This section explains concepts common across all the attack simulations. For each attack 
simulated, we collected data from various sources on the hosts as well as the network. Table 33 
describes the various sources for data and the tools used to collect them. 

 

Table 33. Data collected and collection tools 

Data collected Tool used Location 
Event logs 

(System, security, application) 
Windows Event 

Viewer 
attacker, victim, 

bystander 
Performance logs 

(all counters available) 
Performance 

monitor utility 
attacker, victim, 

bystander 
Registry logs 

(all registry accesses on the host) regmon utility attacker, victim, 
bystander 

Network data logs 
(headers of all packets on the network) windump utility Router 

 
The windows event viewer tool allows access to three event logs: the system, security, 

and application log. It can be cleared or saved at any given time. In order to select all audit 
events, we need to initially select options in the security policy. The following procedure is 
needed only once in a new machine, and can be used for subsequent simulation runs. 

1. Control panel -> administrative tools -> Local Security Policy. 
2. Open “Local Policy Folder” 
3. Click on “Audit Policy” Folder 
4. For each item in the “Audit Policy” folder double click on it, and when the “Local 

Security Policy Setting” window comes up, select both success and failure check boxes, 
followed by “OK”. 

5. You may need to close and re-open “Local Security Policy” or restart before the 
“effective” policy changes. 

6. Find and right click on the “WINNT” folder in “My Computer”. 
7. Select “Properties”. 
8. Select the Security Tab of the “WINNT Properties” window that pops up. 
9. Click the “Advanced…” button. 
10. Select the “Auditing” tab of the “Access Control Settings for WINNT” pop up window. 
11. Click the “Add…” button. 
12. Select “Everyone” from the “Select User or Group” pop up, and click “OK”. The 

“Auditing Entry for WINNT” window should pop up. (You can also reach this window 
by clicking on the “View/Edit” button on the “Access Control Settings for WINNT”). 

13. in the “Auditing Entry for WINNT” select successful and failed check boxes for all the 
access types. Make sure that Apply onto is set to “This folder, subfolders and files”. The 
box marked “Apply these auditing entries to objects and/or containers within this 
container only” should be unchecked. 

14. Select “OK” on the “Auditing Entry for WINNT” window. 



 

 70

15. Select “OK” on the “Access Control Settings for WINNT” window. 
16. Select “OK” on the “WINNT Properties” window. 

The performance monitoring utility can be turned on locally or remotely using the 
performance tool. All performance objects were selected and collected once every second 
(default is once per 15 seconds). Both of these tools are accessible from Control Panel -> admin 
tools. 

To capture registry activity, a utility called regmon is used [30]. It records all accesses to 
the windows registry in real-time, and is a freely downloadable utility. Its output can be saved to 
a text file directly. 

To capture network packets, a utility called win dump is used. Win dump is a windows 
port of the famous tcpdump utility [31]. Specifically for our setup, we used the following 
command line: windump –I 4 –w packlog.bin 

For most attacks, the following setup is used: 
• Network of 5 machines each having similar configuration. 
• Logger machine is used as a remote performance logger. 
• Clock server used to synchronize clocks before each attack simulation. 
• Gateway is used to collect network data during the attack. In this setup the router 

has only one host connected, and thus will only route packets received for that 
host. 

• The other 3 machines are labeled Attacker, Victim, and Bystander. 
Figure 18 describes the simple setup used for the initial simulations of these attacks. All 

the machines are connected to a common hub. For our initial simulation, data collection and 
discovery, we only considered data at the victim (due to time constraints and the enormous 
amount of data collected). This simple setup is sufficient to explore many variables which are 
unaffected by whether or not the attacker is on the same subnet, thus is representative of a 
realistic environment with respect to those variables. 
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Figure 18. Setup used for simulation of attacks 
In order to compare normal scenarios with attack scenarios, each attack simulation is run 

in three phases. Simulation of attacks is done such that normal phases occur before and after the 
attack phase. This allows the study of pre attack normal data and after-effect data along with 
attack data. The phases are- 

• Normal activity data (First 10 minutes), called the normal phase.  
• Attack data (variable time period) 
• After-effects data (10 minutes) 

Attack phase time varies across attacks. For example, in the Meteor FTP attack, this is 
almost instantaneous with a single input packet from the attacker, whereas with the Apache 
attack, the duration of attack is chosen to be 10 minutes. Figure 19 describes the three phases of 
simulation/data collection, and their timelines. 

Clock server 

Attacker 

Gateway 
(Router) 

Remote Logger 

Bystander Victim

Hub
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Figure 19. Data Collection Scenarios – Local and Remote 
 
Logging all performance counters once per second creates huge log files, which get 

written to disk during the simulation. Writing such a huge file to the disk/storing it in memory 
affects the performance counters. Thus, the data logs reflect two effects – 

1: Effect of attack simulation 
2: Effect of data collection 

Since it is not possible to get rid of this effect of data collection, an alternative approach 
is used. Performance counters for all machines (attacker, victim, bystander) are collected on a 
remote machine. Thus, the effect of writing huge logs to the disk is no longer a problem. 
However, this leads to increase in network utilization and corresponding events in the system. 

Thus, we have two modes of data collection – Local and Remote. The difference is only 
with the large performance logs, which are collected on the local machine itself in the former 
case and are collected remotely in the latter case.  
Note: To enable remote performance logging, we need to allow access in control panel -
>services. 

The event, performance, registry and network data logs collected are in their raw state, 
and require some amount of post-processing. The following two steps need to be done. 

For Windump, read raw log data from the binary file and convert to text mode, and save 
in another file. The command used for this is: windump –r packlog.bin >> network_data.txt 
Here packlog.bin is the original file and network_data.txt is the converted text file. 

Separate the data logs into the three phases of normal phase, attack phase and post-attack 
phase. To achieve this, we need to identify the position in time in each log, at which the attack 
begins and ends. As discussed before, for most attacks, the attack phase is 10 minutes, but for a 
few attacks, the attack is a lot less than 10 minutes. These times are identified from analysis of 
each attack. Once these times are identified, we insert special strings in each log file, indicating 
the start and end of the attack. The strings used for this purpose are <attack begins here> and 
<attack ends before here>. The time is rounded to the next higher minute. 

Begin data 
collection 

Initiate 
attack 

End attack End data 
collection 

Time

Normal (10 min)          Attack (Var)      After-effects (10 min)
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A small perl script is used to insert the strings in the performance logs. At this point, the 
filenames, the string to be inserted and the time at which they are inserted are part of the script 
itself. (In the future, they can be taken as parameters to the script.) For the other logs, insertion of 
the strings is fairly trivial and is done manually. 

The following procedure is followed during simulation. Computer clocks for all five 
systems involved in the simulation are synchronized against the same time server 

• Before each simulation, all event logs (application, system, and security logs) are 
cleared 

• Windump packet logger on Gateway is started 
• Performance logs are started (local or remote) 
• Registry monitoring is turned on. 
• Wait for 10 minutes of normal activity 
• Initiate attack script/program 
• Wait for 10 minutes/lesser time for attack to complete 
• Allow 10 minutes of after effects time 
• Stop performance counters 
• Registry monitoring is turned off and logs saved 
• Windump is stopped and log saved 
• Performance logs are stopped and logs saved 
• Event logs are saved. 

 
4.4.2 Specific information for each attack 

 
The following section explains attack specific simulation/data collection details, if any. If 

there is no change from the normal simulation described above, then the particular attack is listed 
without any explanation. 

 
4.4.2.1 EZPublish Confidentiality Attack 
 

EZPublish is software which has a confidentiality vulnerability [32]. A critical system 
file is not protected with the right set of permissions, allowing anyone to access it and read the 
underlying database’s username/passwords and other information. 

• Machines: Attacker, Victim, Bystander 
• Attack: Attack includes opening a file on the remote machine, and saving it to local disk. 

All this is done in under 1 minute. Very likely that attack activity is similar to normal 
activity, since this is a confidentiality attack. 
 Victim has EZPublish software installed on the machine, and allows remote 

connections. Default settings are enabled.  
 Attacker machine connects through the LAN and issues request to the software on 

victim for the settings file.  
 The file is returned to the attacker, thus compromising the security. 

• Simulation timelines: 20 minutes of normal data, followed by attack (under 1 minute), 
followed by 10 minutes of after effects. Here, the attack is a single request for a particular 
file, and the attack ends as soon as the file transfer is successful. 
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• Configuration: For this attack, the only configuration needed is to setup the EZPublish 
software on the victim, and query the victim with a request for the specific system file. 
This request would be: http://[target]/settings/site.ini, where target is the IP address of the 
victim machine. 

 
4.4.2.2 Nmap Scanner 

 
The Nmap scanner is used in this simulation for two purposes – scanning the ports for a 

list of all open ports on the system, and probing every open port to learn what service /version of 
software is running at the port [33]. 

• Machines: Attacker, Victim and Bystander 
• Attack: The attack uses the standard nmap program, which can be freely downloaded 

from the Internet. Options in the nmap program allow selection of victim, selection of 
ports to be scanned, selection of options to probe for services at each open port and other 
options. 

• Simulation timelines: 10 minutes of quiet/no attack, followed by approx. 5 minutes of 
nmap probing, followed by 10 minutes of quiet aftereffects. Since the probing program 
automatically terminates after 5 minutes, there is no need for manual intervention to stop 
the attack. Note: In the remote logging case, normal phase before attack is 13 minutes, 
instead of 10 minutes, due to an oversight.  

• Configuration: nmap -P0 -p 1-1024 -v -v -sT -sV Victim. This scans ports 1 through 
1024, gives verbal output, does a version scan and a stealthy scan on Victim machine. 
These were found to be open TCP ports on the victim: 7, 9, 13, 17, 19, 21, 135, 445 

 
4.4.2.3 Netbus Trojan 

 
Netbus Trojan is a Trojan program that gets installed when a legitimate program is 

installed by a user. The original installable itself is affected, so the user is not aware of the 
installation. 

• Machines: Victim and Bystander 
• Attack: 

 Install malicious program with the game on the victim. 
 Wait 5 minutes. 
 Connect from attacker’s machine to victim’s machine through netbus backdoor. 
 Do a screen dump of victim onto attacker machine as a proof of concept. This shows 

the contents of the victim’s screen to the attacker. 
 Attacker has a installable zip file, for a poker game. The victim installs this file from 

the attacker machine, thinking that it is a game installable and installs it. When the 
game is installed, automatically the netbus server is also installed. This is achieved by 
a simple batch script. (install.bat)  

• Simulation timelines: 10 minutes of normal activity, followed by attack phase for 5 
minutes, followed by 10 minutes of after effects; Here, the attack phase includes- 
accessing the malicious executable program on the victim, installing the program (and 
inadvertently the backdoor) which occurs in less than a minute. This is followed by about 
5 minutes of silence and then the attacker connects to the victim through the backdoor 
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and gets a screen dump of the victim’s machine. Once the screen dump is complete, the 
attack is considered complete.  

• Configuration: A small script is written as a batch file in MS-DOS. This installs a game 
of poker, along with the netbus Trojan server on the victim. The attacker has a netbus 
client, and uses the IP address of the victim to connect and exploit its vulnerability. 

 
4.4.2.4 Meteor FTP 

 
Meteor FTP is a popular FTP server that is available for download on the internet [34]. 

This software has buffer overflow vulnerability, in the username field. Thus, if a long username 
is supplied by the user, the application is unable to handle it and crashes.  

• Machines: Attacker, Victim and Bystander 
• Attack: Remotely connect to the FTP server. In place of the Username, enter USER 

followed by a set of random characters. The server will crash after spitting out an error 
message that unauthorized area in memory was being accessed 

• Simulation timelines: Since this attack is active only when the username request is sent to 
the client and the client responds with a single long string, it takes less than a minute. 
Thus, this attack has 10 minutes of normal phase, followed by an attack phase of under 
one minute, followed by 10 minutes of after effects.  

• Configuration: For this attack, the Meteor FTP server is installed on the victim machine. 
The attacker connects to the victim machine through the FTP service, and issues a long 
username as the input. This leads to crashing the service on the victim machine. The 
attack is fairly straightforward. 

 
4.4.2.5 IRC Chat Server Abuse 

 
IRC allows multiple users to login to the char server program, enter a specific chat room 

and chat with the other users. This is not an attack per se, it is more a misuse of computing 
resources and user time. Thus, there is no attacker, victim for this attack. Rather, there is the 
server and the client. 

• Machines: For this simulation, the IRC chat server is setup on one machine, while the 
char client is setup on the other machine. Thus we have: Client, Server and Bystander. 

• Attack: For this simulation, attack involves connecting from the client to the server, 
entering a chat room and waiting for 10 minutes with the connection between the client 
and server still on. As long as the connection is active, the server/client sends ping 
packets back and forth to verify the connection status. 

• Simulation timelines: 10 minutes of normal session, followed by ten minutes of attack 
session, followed by ten more minutes of aftereffects. 

• Configuration: The IRC chat server and client are downloadable from the Internet. The 
chat server is installed on the Server machine, while the client is installed on the Client 
machine. The client needs to be configured with the IP address/port of the chat server. 
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4.4.2.6 ARP Poison 
 

Attacker sends malformed ARP update packets on the LAN, corresponding to the 
victim's IP address [8]. This makes the machines on the LAN learn the wrong MAC for the 
victim's IP address. Any attempt to reach the victim might fail if the machines learn the wrong 
MAC address. (This information is stored in the ARP table of the machine) 

• Machines: Attacker, Victim and Bystander 
• Attack: The attack executable/program used, sends a series of malformed ARP packets 

on the LAN at regular intervals, during the attack phase. Each packet sent provides the 
wrong MAC address to the IP address of the victim. Thus, the attack is considered on, as 
long as the attack program is run. The attack stops when the attack program is terminated 
(with a Control + C) 

• Simulation timelines: 10 minutes of no attack, followed by attack initiation for 10 
minutes, followed by after-effects for 10 minutes. 

• Configuration: The attack program was written in C++, and compiled on VC++. The 
parameters like time between packets, IP address under attack and MAC address sent are 
configurable in the program itself. Any change to the configuration will require a 
recompilation of the program. 

 
4.4.2.7 Sobig Worm 

 
Sobig is an e-mail worm. It requires user intervention to spread - a user must be tricked 

into executing the attachment containing the worm. Once executed, the worm sends out mass e-
mails to e-mail addresses found on the compromised machine. 

• Machines: Attacker, Victim, Bystander and an additional machine Server to act as a local 
mail server. 

• Attack: The attacker (an infected machine) sends an e-mail with the worm payload to the 
victim machine - the worm searches the victim machine for e-mail addresses and sends e-
mails with the worm payload to additional machines, including the victim, through the 
local mail server. When a user on the victim machine opens the e-mail and is tricked into 
executing the attachment, the worm infects the victim machine as well.  

• Simulation timelines: 10 minutes of no attack, followed by approximately 10 minutes of 
attack (where the worm searches for the victim's e-mail address and sends out infected e-
mails), followed by after-effects for 10 minutes.  

• Configuration: For this attack, an e-mail server must be installed and running on the local 
network. A DNS server must also be present. E-mail clients (e.g., Microsoft Outlook) 
must be present on both the attacker and victim machines. To start the attack, the worm is 
executed on the attacker machine. The attacker machine must contain a text file that 
possesses an e-mail address associated with the victim machine. 

 
4.5 Analytical Discovery 

 
To develop models of cyber attacks, we discover characteristics of cyber signal found in 

our simulation data. We verify these findings by comparing them with our profiles of cyber 
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attacks. We investigated many data analysis techniques, and found the techniques given in this 
section to be the most useful in this investigation. Our investigation included extracting features 
from raw attack simulation data and looking for distinguishing characteristics on those features. 
In this section we present some analysis results. 

These results are only a sampling of the analysis we have conducted. Here we only 
present the analysis results from one of three or four machines for each attack simulation. The 
results presented here are greatly summarized as the actual amount of analysis we have done is 
quite extensive. In the next subsections for the six attacks simulated, we only show those 
variables that show any change between any phases and appear as such in every attack. The 
complete scope of our analysis shows the result of every variable for every stage in every attack. 
For the same reasons, we only interpret and discuss some of the results, within the scope of this 
project. Our future work and publications will give more details of our analytical discovery. 
 
4.5.1 Correlation, Distribution and Difference in Mean 
 

For this section, we include the following results for each analysis (autocorrelation, 
Pearson correlation, distribution, and difference in mean): 

1. For each of the 6 attacks we compute the following 18 lists 
• All variables that change between pre-attack/attack 
• All variables that change between attack/post-attack 
• All variables that change between pre-attack/post-attack 

2. We combine these list together for each attack (resulting in 6 lists) 
3. We compare these 6 lists and pick out the common variables 
4. We pick one variable that is in one of the 18 lists from step 1 and is not in the list from 

step 3. For this variable, we propose a suggestion as to why it is not common among 
attacks. 

5. We pick one variable from the list in step 3. For this variable, we propose a suggestion as 
to why it is common among attacks. 

This report gives the results of steps 3, 4 and 5. However, we do keep the lists from steps 1 and 2 
for further study. 

We first present the procedures we follow for data analysis. This includes an illustration 
of the entire scope of our data analysis, some of which is outside the scope of this report. Next 
we give results from four tests on six attacks: probability distribution, autocorrelation, Pearson 
correlation and difference in averages. Finally we present our results of the one worm covered in 
this section. 
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4.5.1.1 Procedures 
 
This section outlines the data analysis tests we performed with the tools we developed to 

run these tests. This is a comprehensive list of the data analysis process for the performance 
object (performance log) data, and includes steps that we complete, but do not include results for 
in this report. 

 
Steps in analyzing data: Performance Logs 
For raw data file containing data from all three stages: pre-attack, attack and pos-attack 

1. Filter out the first 10 observations, using program, and all-zero variables 
2. Filter variable with zero variance, using program 
3. Separate the file into three files for : pre-attack, attack and post-attack data , based on 

string inserted  
For preattack OR attack OR post attack files 

1. Filter out the all-zero variables  
2. Replace missing data with mean, using program 
3. Run basic stats: mean, variance, minimum, maximum, standard deviation, etc.  
4. Filter variable with zero variance, using program 
5. Run correlation matrix, histograms, hierarchical clustering of variables manually 
6. Run percentage of significant correlations, using program 
7. Scale data using ((x-mean)/SD) for autocorrelation 
8. Fix long name variables problem manually 
9. Run autocorrelation analysis, using program 
10. Run KS Test, and Chi Square Test for distribution testing 
11. Run Skewness and Kurtosis, using program (These have to be done after Step 1 of the 

Mixed files, using common-variables-filtered individual files) 
12. Run ANOVA on percentage of significant correlations results from parametric method 

For mixed files (pre-attack followed by attack) (attack followed by post- attack) (pre-
attack followed by post-attack) 

13. Compare the two files to filter out the uncommon variables to keep only variables that 
exist in both normal and attack files, using program 

14. Run time series plot (sampling every second), using program 
15. Run t-test, and filtered only common variables regardless of data collecting method, and 

victim machines, using programs 
16. Import files into Statistica Miner to run Decision Tree  

 
Steps in analyzing data 

1. Run Pearson, and Spearman for correlations coefficient between variables 
2. Run ANOVA on percentage of significant correlations results from nonparametric 

method 
3. Run Mann-Whitney U test, T-test for difference in averages 

 
In this report, we only consider the numerical data from the performance logs 

(performance object data) generated during attack simulation and data collection. The data we 
analyze here is from one machine. In five of the attacks, this is the victim machine, for IRC Chat, 
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it is the chat server. We use the terms common and uncommon in two cases. With respect to 
local and remote data collection, common variables are those that appear with the same 
characteristics in both collection methods. This eliminates the possibility that the variable is 
effected by data collection method. For attacks, a common variable shows the same 
characteristic across all attacks in this study, whereas an uncommon variable does not. The 
analysis results we computed and collected are as follows: 
 
Distribution Analysis 

• Common variables between local and remote collecting that fall into each distribution for 
each phase 

• Common variables between local and remote collecting that shift distributions between 
phases 

• Common variables among all attack types that shift distributions between phase 
• Uncommon variables among all attack types that shift distributions between phase 
• Skewness and Kurtosis change between phases 
• Variances Difference 

 
Correlation Analysis 

• Variables list that change significance of correlation coefficient between phases (common 
between local and remote) 

• Variables list that are significant in each phases (common between local and remote) 
 
Autocorrelation analysis 

• Variables that are very uncorrelated for each phase (common between local and remote) 
• Variables that are highly correlated for each phase (common between local and remote) 
• Variables that shift autocorrelation between phases(common between local and remote) 
• Common variables across 6 attacks  
• Uncommon variables for each attack 

 
Difference in mean 

• Variables that shows difference in mean between phases 
• Common variables that show difference across all attack type 
• Uncommon variables that show difference for each attack 

 
Although we collect and save many intermediate results, we only present here the higher 

level findings for the sake of brevity. 
 

4.5.1.2 Six Attacks: Probability Distribution of Variables 
 
We experiment to identify the probability distribution of variables in each phase: pre-

attack, attack and post-attack, and find differences in the distributions of variables among the 
three phases to use as the observables in identifying an attack. Due to the small size of some 
attack phase data, we use the Kolmogorov-Smirnov (KS) test for probability distribution because 
it is reliable even on small datasets. 
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Analysis results show that there are four types of distributions commonly found across all 
6 attacks. Figure 20a-c shows an example of what each of these types of distributions look like: 

 
a) Skewed distribution 
b) Bimodal distribution 
c) Uniform and symmetric (potentially normal) distribution 
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a) Examples of right and left skewed distributions 
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b) Examples of bimodal distributions, consisting of two uniform right skewed distributions 

 

   
c) Example of uniform and symmetric distributions 

Figure 20. Example shapes of distributions 
 
 Other significant findings show the following: 

• For all 6 attacks, the most common type of distribution found overall is right skewed 
• There are many variables that shift to a normal or uniform distribution, from one 

phase to the next (pre-attack to attack, or attack to post-attack) 
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We conduct the KS test on all 6 attacks to test whether the variables fall into any of the 
three distributions: uniform, exponential, and normal. Due to the characteristics of our simulated 
data, we can only test exponential distribution (a right skewed distribution), uniform distribution, 
and normal distribution (a symmetric distribution). Also, currently there is no statistical test for 
testing bimodal distribution. As an example of how we derive distributions for the variables, 
Figure 21 shows the KS and Chi Squared test results from 3 machines for 3 probability 
distributions and 3 phases of data collection from 2 locations. 
 

 
Figure 21. KS and Chi Squared sample test results 

 
Table 34 shows an example of the number of variables that fall into a particular 

distribution, using KS and Chi Square test from EZPublish attack. 
 

Table 34. Number of variables that fall into a particular distribution in EZPublish attack 

 Distributions  Phases 
Uniform Exponential Normal 

Total Variables 
in Dataset 

Pre-attack  35 0 0 601 
Attack 48 0 54 374 
Post-attack 50 0 0 369 

 
From Table 34, we see that none of the variables fall into normal distribution in pre-

attack and post attack phase, but 54 variables fall into normal distribution only in attack phase. 
The distribution shifts are found in all 6 attacks, but numbers of variables that shift distribution 
vary. There is no common variable across all 6 attacks. However, the common groups of 

KS Chi Squared Total 
Distributions ----> Uniform Exponential Normal Uniform Exponential Normal
Pre-attack Local

Alpha01 35 0 0 35 0 0 560
Alpha02 37 0 3 37 0 2 449
Alpha03 39 0 1 39 0 0 398

Pre-attack Remote
Alpha01 34 0 0 34 0 0 573
Alpha02 36 0 0 36 0 0 601
Alpha03 35 0 8 35 0 0 497

Attack Local
Alpha01 43 0 48 43 1 48 455
Alpha02 49 0 60 49 9 59 332
Alpha03 61 0 76 62 1 73 262

Attack Remote
Alpha01 34 0 33 34 5 33 527
Alpha02 49 0 82 51 0 51 374
Alpha03 64 0 64 63 0 61 230

Post-attack Local
Alpha01 36 0 3 36 0 2 439
Alpha02 49 0 2 49 0 1 367
Alpha03 53 0 3 50 0 0 322

Post-attack Remote
Alpha01 38 0 0 38 0 0 387
Alpha02 47 0 0 48 0 0 369

  •This table 
shows that 
many 
variables are 
normally 
distributed 
only during 
the attack 
phase 
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variables that shift among the three phases are Process, Processor, Terminal Services Session, 
and Memory groups. 

 
Table 35 shows an example result of an uncommon variable from EZPublish that shift 

distribution among three phases. The shift does not happen in other attacks in this study. 
 

Table 35. Example result of uncommon variables from EZPublish. 

 
From Table 35, variable “Memory\Cache Faults/sec” does not fall into either uniform, 

exponential or normal distribution during pre-attack and post-attack phase, but falls into normal 
distribution during the attack. The variable shows the number of faults which occur when a page 
sought in the file system cache is not found there and must be retrieved from elsewhere in the 
memory or from disk. The file system cache is an area of physical memory that stores recently 
used pages of data for applications. We believe the reason for this distribution shift is that when 
the attack happens, the attacker requests a confidential file, which is not frequently accessed, 
from the victim machine. Due to infrequent access, the file is not cached and the system has to 
fetch it. This increases the faults and also lowers the variance of faults/sec during the attack, and 
makes the variable fall into normal distribution. The reason that this variable does not show the 
shift in other attacks like Netbus Trojan or IRC Chat is that these two attacks do not involve 
requesting the infrequently accessed file. 
 
4.5.1.3 Six Attacks: Correlation of Variables 
 

For correlation of variables, we consider autocorrelation and Pearson correlation. We 
outline a sampling of our results in this section. 
 
Autocorrelation 

 
“Autocorrelation is the expected value of the product of a random variable or signal 

realization with a time-shifted version of itself” (http://cnx.rice.edu/content/m10676/latest/). We 
use autocorrelation analysis to detect whether a variable changes its autocorrelation (shifts) 
between pre-attack, attack and post-attack phases. 

As shown in Figure 22, we discover the variables, which shift autocorrelation between 
phases, using the ARP Poison attack as an example. From Figure 22 we can see that we collect 
variables from 3 computers (Attacker, Victim and Bystander), during 3 phases of an attack (pre, 
during and post) using 2 collection methods (local and remote). We look at whether the 
autocorrelation for each variable in each phase is high or low, and record those variables that 
change autocorrelation between phases. The procedure of discovering the shifting variables for 
other attacks follows a similar routine. The procedure of finding common shifting variables 
among all six attacks is shown in Figure 23, where we see that we consider all sets of shifting 
variables for each attack and each phase, and extract those variables that are common (in the 
union of the sets) for each machine. 

Variable Name Pre-attack Attack Post-attack 
Memory\Cache Faults/sec Unidentified Normal Unidentified 
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Figure 22. Procedure of finding shifting variables in autocorrelation analysis 
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Figure 23. Procedure of finding common variables in autocorrelation analysis 
 
The common variables that shift autocorrelation status among six attacks are shown in 

Table 36. “H” means the variable is significantly autocorrelated (using tests for correlation with 
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a p-value of .05 and 10 lags; both commonly used values). “L” means the variable is not 
significantly autocorrelated. “-” indicates the variable shows that variable is neither “H” nor “L”. 

 

Table 36. Autocorrelation Shifting Variables on machine Victim 

VARIABLE PRE- 
ATTACK ATTACK POST-

ATTACK 
Terminal Services Session(Console)\Input Errors H H - 
Terminal Services Session(Console)\Input Async Overflow H H - 
Terminal Services Session(Console)\Total Errors H H - 
Terminal Services Session(Console)\Total Async Overflow H H - 
Terminal Services Session(Console)\Protocol Bitmap Cache Reads H H - 

 
Table 37 gives an example of an uncommon shifting variable from the ARP Poison 

attack. 
 

Table 37. Example of an uncommon variable from ARP Poison 

VARIABLE PRE-
ATTACK ATTACK POST-

ATTACK
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet 
Scheduler Miniport)\Bytes Sent/sec L H L 

 
In Table 37, the variable “Network Interface(Intel[R] PRO_100 VE Network Connection 

- Packet Scheduler Miniport)\Bytes Sent/sec” on the victim machine under ARP Poison attack, is 
not autocorrelated in the pre-attack or post-attack phase. It is highly autocorrelated in the attack 
phase. This variable shows the rate at which bytes are sent on the interface, including framing 
characters. In the ARP Poison attack, the attacker sends ARP response packets with the wrong 
MAC address to the victim, who receives the requests and updates its ARP table. Thus, the 
victim cannot reach its destination successfully. The data it sends may explain this high 
correlation characteristic. Other attacks, like EZPublish, don’t involve multiple network packets, 
which may be why it doesn’t show up in the common variables of all six attacks. 

Table 38 shows an example of a common variable among attacks. 
 

Table 38. Example of a common variable 

VARIABLE PRE-
ATTACK ATTACK POST-

ATTACK
Terminal Services Session(Console)\Protocol Bitmap Cache Reads H H - 

 
“Protocol Bitmap Cache Reads show the number of references to the protocol bitmap 

cache” [35]. This variable shows significant autocorrelation in both pre-attack and attack phases, 
but not in the post-attack phase. This may reveal that all the attacks influence the number of 
references to the protocol bitmap cache, which may explain why it changes its autocorrelation 
pattern for all the attacks. 
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Pearson Correlation 
 

We use Pearson correlation to analyze the correlation between two variables. The shifting 
of the Pearson correlation of a pair of variables between phases can help to detect the shift of the 
phase changes. Figure 24 shows the procedure of finding Pearson correlation shifting variables in 
the ARP Poison attack. Figure 25 depicts the procedure of finding common variables that shift 
Pearson correlation status between phases among all six attacks. 
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Figure 24. Procedure of finding shifting variable in Pearson correlation analysis 
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Figure 25. Procedure of finding common shifting variable in Pearson correlation analysis 

 
Compared to Autocorrelation analysis in which we find only 5 common variables, there 

are 266 pairs of common variables in the six attacks. This is because Pearson correlation analysis 
looks into pairs of the variables instead of a single variable. For instance, given 500 variables, 
autocorrelation analysis will analyze the 500 variables while Pearson correlation will analyze 

750,1242
500 =C  pairs of variables. Table 39 shows the first 10 pairs of common variables. “H” 

shows the two variables are significantly correlated. “-” indicates the two variables are not.
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Table 39. Sample Pearson Correlation Common Variables on Machine Victim 

VARIABLE1 VARIABLE2 PRE- 
ATTACK ATTACK POST-

ATTACK 
Cache\Lazy Write 
Flushes/sec 

Process(SVCHOST#1)\Handle 
Count 

H - - 

Cache\Lazy Write Pages/sec Process(SVCHOST#1)\Handle 
Count 

H - - 

Memory\Page Faults/sec Objects\Threads H - - 
Memory\Page Faults/sec Process(SVCHOST#1)\Thread 

Count 
H - - 

Memory\Page Faults/sec Process(SVCHOST#1)\Pool 
Paged Bytes 

H - - 

Memory\Page Faults/sec Process(_Total)\Thread Count H - - 
Memory\Page Faults/sec System\Threads H - - 
Memory\Page Faults/sec Terminal Services 

Session(Console)\Thread 
Count 

H - - 

Memory\Available Bytes Terminal Services 
Session(Console)\Input Errors 

H - - 

Memory\Available Bytes Terminal Services 
Session(Console)\Total Errors 

H - - 

 
Table 40 gives an example pair of uncommon shifting variables. 
 

Table 40. Example pair of uncommon variables 

VARIABLE1 VARIABLE2 PRE- 
ATTACK ATTACK POST- 

ATTACK

Memory\Page Faults/sec Redirector\Packets Received/sec - H - 

 
Variables “Memory\Page Faults/sec” and “Redirector\Packets Received/sec” are not 

correlated in pre or post-attack phases, but are in attack phase. 
Memory\Page Faults/sec is the overall rate of page faults handled by the processor per 

second. A page fault occurs when a process requires code or data that is not in its working set (its 
space in physical memory). This counter includes both hard faults (those that require disk access) 
and soft faults (where the faulted page is found elsewhere in physical memory) [35]. 

The Redirector performance object consists of counters that monitor network connections 
originating at the local computer. Packets Received/sec is the rate at which the Redirector is 
receiving packets (also called SMBs or Server Message Blocks). Network transmissions are 
divided into packets. The average number of bytes received in a packet can be obtained by 
dividing Bytes Received/sec by this counter [35]. 
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Table 41 gives an example pair of common shifting variables. 
 

Table 41. Example pair of common variables 

VARIABLE1 VARIABLE2 PRE- 
ATTACK ATTACK POST- 

ATTACK 
Memory\Page Faults/sec System\Threads H - - 

 
System\Threads is the number of threads in the computer at the time of data collection. 

Notice that this is an instantaneous count, not an average over the time interval. A thread is the 
basic executable entity that can execute instructions in a processor [35]. 

The above two variables are correlated in the pre-attack phase, which may reveal the 
“normal” relationship between them. Note that both variables in the pair in Table 41 are also 
correlated in the pre-attack phase. 
 
4.5.1.4 Six Attacks: Variable Difference in Means 
 

In this section we investigate the differences in average of all variables among the three 
phases: pre-attack, attack, and post-attack. In earlier versions of attack simulations, we have both 
active scenarios (with user activity) and inactive scenarios (without user activity). We find that 
numbers of variables that have a shift in average between phases are noticeably higher in user 
activity scenarios. These results suggest that if we know characteristics of both signal and noise, 
it will enable us to see more contrast between the two and thus, detect the intrusion more 
effectively. 

Since our data has several types of distributions, we used the Mann-Whitney U test 
(Wilcoxon test) to test for difference in means because of its reliable performance regardless the 
data distributions. In each attack, the Mann-Whitney U test is conducted in three two-phase files: 
pre-attack vs. attack, attack vs. post-attack, and pre-attack vs. post-attack. Table 42 shows 
example result from the Mann-Whitney test from UDP Storm attack. 

 

Table 42. Mann-Whitney test from UDP Storm attack 

Active /Inactive Number of significant variables 
Active 319 

Inactive 189 
 
Table 43 shows example results from the Mann-Whitney test on data from the ARP 

Poison attack. 
 

Table 43. Example results from Mann-Whitney on ARP Poison attack 

Active /Inactive Number of significant variables 
Active 139 

Inactive 103 
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From Table 42 and Table 43, the numbers of significant variables are noticeably higher in 
active scenarios than in inactive scenarios. In newer version of attack simulation, we have a list 
of common variables that have mean shift among phases in all 6 attacks Table 44 shows a subset 
of these variables. 

 

Table 44. Example list of common variables that shift averages 

Variable Name 
Memory\Available Bytes 
Memory\Committed Bytes 
Memory\Demand Zero Faults/sec 
Memory\Pool Paged Bytes 
Memory\Pool Paged Resident Bytes 
Memory\% Committed Bytes In Use 
Memory\Available Kbytes 
Objects\Threads 
Objects\Events 
Process(CSRSS)\Handle Count 
Process(LSASS)\Working Set 
Process(SVCHOST#1)\Virtual Bytes 
Process(SVCHOST#1)\Working Set 
Process(SVCHOST#1)\Page File Bytes 
Process(SVCHOST#1)\Private Bytes 
Process(SVCHOST#1)\Thread Count 
Process(_Total)\Virtual Bytes 
Process(_Total)\Working Set Peak 
Process(_Total)\Working Set 
Process(_Total)\Page File Bytes Peak 
Process(_Total)\Page File Bytes 
Process(_Total)\Private Bytes 
Process(_Total)\Thread Count 
Process(_Total)\Pool Nonpaged Bytes 
Terminal Services Session(Console)\Virtual Bytes 
Terminal Services Session(Console)\Working Set Peak 
Terminal Services Session(Console)\Working Set 
Terminal Services Session(Console)\Page File Bytes Peak 
Terminal Services Session(Console)\Page File Bytes 
Terminal Services Session(Console)\Private Bytes 
Terminal Services Session(Console)\Thread Count 
Terminal Services Session(Console)\Pool Nonpaged Bytes 

 
From Table 44, the common groups of variables that have a mean shift between phases 

are Memory, Objects, Process, and Terminal Services Session. Most of the common variables 
are good indicators for the level of activity generated from attacks. 
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In IRC Chat, the “Objects\Events” variable average value during the attack phase is more 
than that of pre-attack phase. This variable shows the number of events in the computer at the 
time of data collection. An event is used when two or more threads wish to synchronize 
execution. We believe this mean shift happens because, during the attack, the computer opens a 
new network connection with another machine. So, perhaps, the system creates more threads to 
handle this network activity. We found this increase in averages in other attacks (i.e. NMAP). 

 
We find many variables that shift average values among phases in only some types of 

attacks. Table 45 shows an example list of uncommon variables that have changes in average 
value among phases from NMAP attack. 

 

Table 45. Example list of uncommon variables from NMAP attack. 

Variable Name 
IP\Datagrams/sec 
IP\Datagrams Received/sec 
IP\Datagrams Received Delivered/sec 
IP\Datagrams Sent/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Bytes Total/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Packets/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Bytes Received/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Packets Received Unicast/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Bytes Sent/sec 
Network Interface(Intel[R] PRO_100 VE Network Connection - Packet Scheduler 
Miniport)\Packets Sent Unicast/sec 
Processor(0)\Interrupts/sec 
Processor(0)\DPCs Queued/sec 
Processor(0)\% Idle Time 
Processor(0)\% C3 Time 
Processor(0)\C3 Transitions/sec 
TCP\Segments/sec 
TCP\Connections Passive 
TCP\Connections Reset 
TCP\Segments Received/sec 
TCP\Segments Sent/sec 

 
From Table 45, in NMAP, the “IP\Datagrams/sec” variable’s average value during pre-

attack and post-attack is lower than that of the attack phase. “IP\Datagrams/sec” shows the rate at 
which IP datagrams are received from or sent to the interfaces, including those in error. We 
believe that the difference in average is caused by the IP inquiries and responses between 
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attacker and victim during the port scan. Other attack types in this study do not require such IP 
packets transferring, so this variable appears significant in NMAP only. 
 
4.5.1.5 Sobig Worm Data Analysis 
 

Because the worm analysis only includes one worm, we cannot do comparisons across 
worms. We include these results as an example to show how our data analysis tools extend 
beyond analyzing attacks to the analysis of data collected for worms as well. In this section we 
present a sample of some of our early findings on analyzing probability distribution and variable 
correlation in worm data. 

 
Probability distribution of variables 

 
Just as with the six attacks described previously, we conduct the KS and Chi Squared 

tests on the data from the Sobig worm to test whether the variables fall into any of the three 
distributions: uniform, exponential, and normal. (Note: data from the attack phase of the remote 
data collection scenario is not available at this time.) These results are shown in Table 46. 

 

Table 46. Results from KS and Chi-Squared tests on worm 

KS Chi-Squared Distributions 
Uniform Exponential Normal Uniform Exponential Normal 

Total 

Pre-attack Local 126 0 5 126 0 0 586 
Pre-attack Remote 310 0 0 309 0 0 841 
Attack Local 28 0 0 37 0 0 734 
Post-attack Local 62 0 27 62 0 0 657 
Post-attack Remote 257 0 30 257 0 0 846 

 
Similar to the EZPublish attack data, few or no variables fall into the normal distribution 

during the pre-attack phase. However, the KS test shows a number of variables that fall into the 
normal distribution during the post-attack phase (as opposed to during the attack phase in the 
EZPublish attack). 

 
Correlation of Variables 
 

For the correlation of variables, we again perform autocorrelation and Pearson correlation 
as before. Because there are so many variables in this study, the results given in this section only 
include the counts of those variables. 

 
 
Autocorrelation 
 

Our findings suggest that a number of variables shift autocorrelation status between 
phases. Furthermore, the number of variables increases with remote data collection. These results 
are given in Table 47. 
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Table 47. Autocorrelation results for worm 

Collection Location Phase Variable Count 
Local Pre 585
Local Attack 733
Local Post 656

Remote Pre 840
Remote Attack 910
Remote Post 845

 
Pearson Correlation 
 

In our findings, it seems like literally half of the variables are correlated. The results also 
suggest that many variables shift between phases and collection modes as we see for 
autocorrelation. We give these variable counts in Table 48. 

 

Table 48. Pearson correlation results for worm 

  
Significant 

Correlations  Total Cells 
Correlation 
Percentage 

Pre-attack Local 76940 170236 45.196% 
Pre-attack Remote 202078 351541 57.483% 
Attack Local 110146 267546 41.169% 
Attack Remote 214872 412686 52.067% 
Post-attack Local 92770 214185 43.313% 
Post-attack Remote 195904 355746 55.069% 

 
4.5.2 Wavelets 
 

In this section we give some results from our analysis using wavelets. We follow these 
steps: 

1. Identify specific data to collect corresponding to the specified raw data derived from 
attack profiles 

2. Extracting data in the log files collected from each attack using specific programming 
tools and statistical packages 

3. Analyzing the extracted variables 
 

The section proceeds as follows: describe procedures used, present lists of identified and 
extracted variables (steps 1 and 2), present results of Wavelet and ANOVA analysis (step 3). 

 
4.5.2.1 Procedures 

 
We generalize variables from our attack profiles. We use this list of variables as input to 

programs, which we have written to extract the variables from our simulation data files. 
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To test our methods of verifying additional features on data, we analyze all variables and 
report examples of those results in this section. Two kinds of analysis are carried out: Wavelet 
analysis and ANOVA for the wavelet coefficients. For both the analysis, remote and local 
scenarios of data collection are considered .Data from performance log on Victim is collected 
and only the non-zero, non-invaried set of variables are considered for analysis. In all the attacks 
the number of variables in this category ranges from 400 to 700. Types of wavelet transforms 
considered for both the analysis 

• Haar transform – useful in approximating to step change pattern. 
• Morlet transform – useful in approximating to sine and cosine wave patterns. 
• Derivative of Gaussian (DOG)/Mexican hat- useful in approximating to Gaussian noise 

pattern which is dominant in physical space. 
• Paul transform –useful in approximating to narrow changes in sine and cosine and forms 

a bridge between morlet and derivative of Gaussian which will help in estimating the 
direction in which pattern changes. 

 
4.5.2.2 Identification and Extraction of Variables 
 
 Table 49 gives a list of variables that we have identified from our attack profile 
generalizations and extracted using tools we created. 
 

Table 49. Variables identified and extracted 

Data 
Type Identified Variables Extracted Variables 

single source 
1 Raw data: header fields and some data 

fields (e.g., file name) of each packet 
Computed variable: total similarity 
score from comparisons of all fields 
between consecutive packets 

IP packet header -SRC,DEST 
TCP packet header – 
SRC_PORT,DEST_PORT 
(from the network data log, extracted 
using c program) 

2 Raw data: a string indicating the start or 
termination of a host or network 
application in the Windows 
security/system/application log 

“Registry, security logs, the start time 
of each new application” 
EX: Registry log –Explorer.exe 
Security log –Image file name like 
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE 
(extracted using c program) 

multiple source, subject to Haar and Complex wavelet analysis 
Intensity measures 
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1 Raw data: a variable measuring 
incoming and outgoing traffic volume 
per second  

1. Network Interface(Intel[R] PRO_100 VE 
Network Connection - Packet Scheduler 
Miniport)\Packets/sec. 
2. Network Interface(MS TCP Loopback 
interface)\Packets/sec 
3. Network Interface(Intel[R] 
PRO_Wireless LAN 2100 3A Mini PCI 
Adapter - Packet Scheduler 
Miniport)\Packets/sec” 
(from performance log) 

2 Raw data: packets or variables for 
traffic volumes per second Computed 
variable: intensity ratio of incoming 
traffic volume to outgoing traffic 
volume per second 

1. Network Interface(Intel[R] 
PRO_Wireless LAN 2100 3A Mini PCI 
Adapter - Packet Scheduler 
Miniport)\Packets Received/sec 
2. Network Interface(Intel[R] PRO_100 VE 
Network Connection - Packet Scheduler 
Miniport)\Packets Received/sec 
3. Network Interface(MS TCP Loopback 
interface)\Packets Received/sec 
4. Network Interface(Intel[R] 
PRO_Wireless LAN 2100 3A Mini PCI 
Adapter - Packet Scheduler 
Miniport)\Packets Sent/sec 
5. Network Interface(Intel[R] PRO_100 VE 
Network Connection - Packet Scheduler 
Miniport)\Packets Sent/sec 
6. Network Interface(MS TCP Loopback 
interface)\Packets Sent/sec” 
(from performance log) 

3 Raw data: a sample per second from a 
variable measuring network resource 
utilization in CPU  

Not available. 

4 Raw data: a sample per second from a 
variable measuring network resource 
utilization in CPU  by a particular 
application such as web server  

Not available directly. 'Server 
bandwidth' for FTP server is the closest 
available. Similarly, we could have a 
variable for web service. 

5 Raw data: a sample per second from a 
variable measuring network resource 
utilization in storage or length of buffer 
(directly linked to response time) 

Not available 

6 Raw data: a sample per second from a 
variable measuring network resource 
utilization in storage or length of buffer 
(directly linked to response time) by a 
particular application such as web 
server 

Not available 



 

 97

7 Raw data: a sample per second from a 
variable measuring network resource 
utilization in communication bandwidth 

Not available (Network interface/ 
current bandwidth gives the total 
bandwidth of the interface, not the used 
bandwidth. Thus, it is not useful) 

8 Raw data: a sample per second from a 
variable measuring network resource 
utilization in communication bandwidth 
by a particular application such as web 
server 

Not available 

9 Raw data: "Destination Port" in the 
TCP header of each incoming packet to 
a host Computed variable: Access 
intensity (access count per second) to 
more common ports (www, email, etc.) 

TCP packet header – SRC_PORT 
(in the network data log, extracted 
using c program) 

10 Raw data: "Destination Port" in the 
TCP header of each outgoing packet 
from a host Computed variable: Access 
intensity (access count per second) to 
more common ports (www, email, etc.) 

TCP packet header – DEST_PORT 
(in the network data log, extracted 
using c program) 

11 Raw data: "Destination Port" in the 
TCP header of each incoming packet to 
a host Computed variable: Access 
intensity (access count per second) to 
less common ports (all others)  

TCP packet header – SRC_PORT 
(in the network data log, extracted 
using c program) 

12 Raw data: "Destination Port" in the 
TCP header of each outgoing packet 
from a host Computed variable: Access 
intensity (access count per second) to 
less common ports (www, email, 
others?)  

TCP packet header – DEST_PORT 
(in the network data log, extracted 
using c program) 

13 Raw data: "Event Type" of each audit 
event record on a host Computed 
variable: Intensity (number of events 
per second) of more common event 
types 

In each of application/system/security 
logs – the “event id field number 
(extracted using program) 

14 Raw data: "Event Type" of each audit 
event record on a host Computed 
variable: Intensity (number of events 
per second) of less common event types 
(all others) 

In each of application/system/security 
logs – the “event id field number 
(extracted using program) 

15 Raw data: a variable measuring host 
resource utilization (a sample per 
second) in CPU 

“Processor(_Total)\% Processor Time” -
from performance log 
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16 Raw data: a variable measuring host 
resource utilization (a sample per 
second) in storage 

Not available 

Activity pattern measures 
17 Raw data: "Destination Port" in the 

TCP header of each incoming packet to 
a host Computed variable: Frequency 
ratio of more common ports (web, 
email, and others?) to less common 
ports (all others) on a host Computation 
method: 1) initialize the ratio with the 
average ratio in a noise condition, 2) 
update the ratio with each packet using 
"Destination Port" and EWMAn=(1 if 
common or 0 if not  + 0.3*EWMAn-1)/ 
(1 if uncommon or 0 if not + 
0.3*EWMAn-1)   

TCP packet header – SRC_PORT”  
(in the network data log, extracted using 
c program) 

18 Raw data: "Destination Port" in the 
TCP header of each outgoing packet 
from a host Computed variable: 
Frequency ratio of more common ports 
(define?) to less common ports (all 
others) on a host Computation method: 
1) initialize the ratio with the average 
ratio in a noise condition, 2) update the 
ratio with each packet using 
"Destination Port" and EWMAn=(1 if 
common or 0 if not  + 0.3*EWMAn-1)/ 
(1 if uncommon or 0 if not + 
0.3*EWMAn-1)   

TCP packet header – DEST_PORT 
(in the network data log, extracted using 
c program) 

19 Raw data: "Event Type" of each audit 
event record on a host Computed 
variable: Frequency ratio of more 
common event types to less common 
event types (all others) on a host 
Computation method: 1) initialize the 
ratio with the average ratio in a noise 
condition, 2) update the ratio with each 
event using "Event Type" and 
EWMAn=(1 if common or 0 if not  + 
0.3*EWMAn-1)/ (1 if uncommon or 0 if 
not + 0.3*EWMAn-1)  

“Event id field number” extracted from 
security, system and application log. 
(extracted using c program and also the 
computational method defined has been 
implemented) 
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20 Raw data: Each string entry in the 
Windows Security/Application/System 
log Computed variable: Frequency ratio 
of more common entry types to less 
common entry types (all others) on a 
host Computation method: 1) initialize 
the ratio with the average ratio in a 
noise condition, 2) update the ratio with 
each entry using the entry type and 
EWMAn=(1 if common or 0 if not  + 
0.3*EWMAn-1)/ (1 if uncommon or 0 if 
not + 0.3*EWMAn-1)  

Registry, security logs, the start of each 
new string 
EX: Registry log –Explorer.exe 
        Security log –Image file name like 
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE 

21 Raw data: each file name appearing in ? 
log or counter on a host Computed 
variable: Frequency ratio of common 
files to less common files (all others) on 
a host Computation method: 1) 
initialize the ratio with the average ratio 
in a noise condition, 2) update the ratio 
with each file name appearance using 
"Event Type" and EWMAn=(1 if 
common or 0 if not  + 0.3*EWMAn-1)/ 
(1 if uncommon or 0 if not + 
0.3*EWMAn-1)  

Security log –Image file name like 
C:\WINDOWS\SYSTEM32\DEFRAG.
EXE 

22 Raw data: "Event Type" of each audit 
event record on a host Computed 
variable: Frequency ratio of more 
common event types to less common 
event types (all others) on a host 
Computation method: 1) initialize the 
ratio with the average ratio in a noise 
condition, 2) update the ratio with each 
file name appearamce using "Event 
Type" and EWMAn=(1 if common or 0 
if not  + 0.3*EWMAn-1)/ (1 if 
uncommon or 0 if not + 0.3*EWMAn-1) 

Done already in 19 

 
4.5.2.3 Wavelet Analysis 
 
 The purpose of wavelet analysis is to convert the time series data into frequency 
(retaining the time domain information) and analyze the pattern of the input data and also the 
different frequency components and the signal strengths of them. 
 The wavelet shapes of the transformations we use are shown in Figure 26. 
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Figure 26. Wavelet shapes of transformations 

 
 We describe the method adapted for implementing each wavelet transform next. 

Haar: The transformation into the additive and difference components was done 
successively till the nearest power of 2 in the observations for each variable in the performance 
log and the frequency components were defined such that the difference terms in each iteration 
forms one set of frequency. 

Morlet,Paul and DOG: The transformation was done as per the equation of the mother 
wavelet for each of the 3 transforms. Totally 29 different scales (each representing one frequency 
component) were designed ranging from 2 to 256 to convert time series data into frequency. 

We draw two types of results for this analysis: Pattern based on visual inspection of time 
series plot and variations in signal strength based on visual inspection of wavelet power 
spectrum. 

For pattern based on visual inspection of time series plot, the results indicate the 
following patterns in the numerical data obtained from the performance log across all the 6 
attacks considered. 

• Step change 10-15% 
• Random fluctuations 25-35% 
• Spike change 40-45% 
• Steady change 2 to 5%   

For these overall percentages, the pattern looks the same in all 3 phases, where as 
individual variables may differ between each phase. These patterns are shown in Figure 27, 
which just gives an example of the basic shape of the pattern, and is not meant to be considered 
in detail. 

 

a) Haar b) Paul 

c) DOG d) Morlet 
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Figure 27. Examples of basic shapes of signal patterns 

 
 For variations in signal strength based on visual inspection of wavelet power spectrum, 
the signal strength is analyzed based on how frequently it changes and in which frequency band 
it falls. 

The tables below will indicate the presence of variations in signal strength in 3 different 
frequency bands. 

1. High pass band –indicating that the variations in the time series data are rapid and 
one has to look at high frequency components to analyze the data. . 

2. Medium pass band –indicating that the fluctuations in the time series data are 
moderate and one has to look at medium frequency components to analyze the 
data. 

3. Low pass band - indicating that the fluctuations in the time series data are slow 
and one has to look low frequency components to analyze the data. 

Note: Low frequency components can be used as a characteristic to detect slow and 
stealthy versions of a cyber attack. 

For the observations in the table, uniformly spread in all bands indicates that time series 
data has all frequency components with equal strengths and one has to analyze all of them. 
Dominant high/low pass band indicates that these particular frequency components are strong in 
the time series data and the data can be analyzed with these components. Low and high pass 
band indicates that both low and high frequency components are strong and the data can be 
analyzed with them. 

a) Step change b) Random fluctuations 

d) Steady change c) Spike 
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Table 50-Table 55 give the analysis results for pattern and signal strength covering all 

wavelet methods and variables. 

Table 50. EZPublish Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

Spike, step change, 
random fluctuations 
and steady change 

Spike, step change, 
random fluctuations 
and steady change 

Spike, step change, 
random fluctuations 
and steady change 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Low and high pass 
bands 

Uniformly spread in 
all bands 

 

Table 51. NMAP Scanner Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

Spike, step change 
and random 
fluctuations. One 
variable shows steady 
increase. 

Spike, step change, 
random fluctuations 
and steady change 

Spike, step change  
and random 
fluctuations and 
steady increase 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Dominant high pass 
band 

Uniformly spread in 
all bands 

 

Table 52 Netbus Trojan Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

 Spike, step change, 
random fluctuations 
and steady increase 

 Spike, step change, 
random fluctuations 
and steady change 
 

Spike, step change, 
random fluctuations 
and steady increase 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Low and high pass 
band 

Uniformly spread in 
all bands 
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Table 53. Meteor FTP Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

 Spike, step change , 
random fluctuations 
and steady increase 

 Spike, step change, 
random fluctuations 
and steady change 
 

Spike, step change , 
random fluctuations 
and steady increase 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Dominant high pass 
band 

Uniformly spread in 
all bands 

 

Table 54. IRC Chat Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

 Spike, step change , 
random fluctuations 
and steady increase 

 Spike, step change, 
random fluctuations 
and steady change 
 

Spike, step change , 
random fluctuations 
and steady increase 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Dominant low pass 
band 

Uniformly spread in 
all bands 

 

Table 55. ARP Poison Attack 

PHASE PRE ATTACK ATTACK POST ATTACK 
Pattern based on 
visual inspection of 
time series plot 

 Spike, step change , 
random fluctuations 
and steady increase 

Spike, step change, 
random fluctuations 
and steady change 
 

Spike, step change , 
random fluctuations 
and steady increase 

Variations in signal 
strength based on 
visual inspection of 
wavelet power 
spectrum 

Uniformly spread in 
all bands 

Dominant low pass 
band 

Uniformly spread in 
all bands 

 
For each attack, we describe an example variable with an observed pattern that changes 

between phases. 
EZPublish: Example variable, physical disk - idle time (step decrease), involves reading a 

file from the victim machine. Physical disk/idle time represents percentage of time in sample 
interval that the disk is idle. During normal phase, the only activity on disk is writing the log 
files. During the attack, a new file is accessed, causing a step down change in this variable. 
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NMAP Scanner: Example variable, connections reset/sec (staircase). NMAP sends SYN 
packets to different ports and resets connections once it receives a response. This leads to an 
increase in connections reset/sec in NMAP. Thus, this is a staircase like step increase. 
 Netbus Trojan: Example variable, process (svchost) IO write operations per sec (step 
increase), represents amount of data written to a remote destination over the network. This 
represents the screen dump data sent to the attacker from the victim, after netbus is installed. 
Screen dump is just an image file showing the current desktop of the victim to the attacker. 
 Meteor FTP: No significant change can be noticed in variables in performance log for 
this attack. The attack only involves one string sent over the network and crash in FTP server. 
However, since the normal phase does not have any network/ftp server activity, no difference is 
seen. 

IRC Chat: Example variable, network interface packets sent/sec (up-spike at regular 
intervals). Pings are sent between client/server at regular intervals to maintain connection. This 
leads to a spike at regular intervals in this variable. 

ARP Poison: Since ARP update packets are the only network activity, this is not reflected 
in performance logs. Thus, no significant change can be seen in any variable. 

 
4.5.2.4 ANOVA Analysis 

 
In general, the purpose of analysis of variance (ANOVA) is to test for significant 

differences between averages. If we are only comparing two averages, then ANOVA will give 
the same results as the t-test for independent samples (if we are comparing two different groups 
of cases or observations), or the t-test for dependent samples (if we are comparing two variables 
in one set of cases or observations) 

The method we use considers only the main effects, ignoring the interaction term. We 
analyze the first order (non interactive) effect of 2 categorical independent variables (phase and 
frequency) on the dependent variable (response) which is the energy of wavelet coefficients. 

The independent variables (factors) are 
• Phase – pre attack, attack and post attack 
• Frequency – 29 different scales (each representing a frequency) of the mother 

wavelet for 3 types of wavelets Morlet, Derivative of Gaussian and Paul. 
The dependent variable is: 

• Energy of the wavelet coefficients (sum of the squares) for each of the 29 
different frequency components and 3 different phases. 

The input to our ANOVA analysis is thus described in Table 56. 
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Table 56. Input table to ANOVA 

Phase Frequency Energy value(response) 
1 
1 
. 
. 
1 

1 
2 
. 
. 

29 

Values corresponding  to 
each frequency ( total 29 ) 
for pre attack phase 

2 
2 
. 
. 
2 

1 
2 
. 
. 

29 

Values corresponding  to 
each frequency ( total 29 ) 
for attack phase 

3 
3 
. 
. 
3 

1 
2 
. 
. 

29 

Values corresponding  to 
each frequency ( total 29 ) 
for post attack phase 

 
Table 57-Table 62 give the number of variables found significant in the ANOVA main 

effects analysis for each attack, using the independent variables described above. Following each 
table is a summary of the findings. Here, again, we are presenting our findings. A full discussion 
and critical evaluation of all findings is outside the scope of this project and only included in our 
future work. 

Table 57. EZPublish Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 78 72.8 68.8 81 80.3 80.3 80.8 79.2 74.5 Percentage 
significant 
variables 
(Local)  

Frequency 19.1 19.6 20.6 22.2 21 15.9 20.2 22.1 20.1 

Phase 85.1 58.3 50.4 91.6 61.8 60.1 90.5 62 57.2 Percentage 
significant 
variables 
(Remote) 

Frequency 19.4 16.7 10.7 13.6 13 7.7 20.4 16.5 8.1 

 
Table 57 summary: 

• Significant variables are very high in phase factor compared to frequency. 
• 75 to 80% of input variables are significant in phase on an average. 
• 10 to 20% of input variables are significant in frequency on an average. 
• Compared to Morlet, Paul and DOG wavelets show more significant variables in 

phase.
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Table 58 NMAP Scanner Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 46 44.
4 
 

60.3 62.4 73.1 87.2 58.6 66.9 84.
1 

Percentage 
of significant 
variables 
(Local) Frequenc

y 
30.7 32.

7 
37.5 26.7 25.5 35.3 32.4 33.6 39.

2 
Phase 61.1 51.

5 
60.4 83.5 71.6 89.1 74.3 69.2 79.

7 
Percentage 
of significant 
variables 
(Remote) 

Frequenc
y 

44.8 35.
1 

33.3 31.7 19.4 22.6 49.8 36 37.
7 

 
Table 58 Summary: 

• Significant variables are higher in phase factor compared to frequency. 
• 65-70% of input variables are significant in phase on an average. 
• 25-35% of input variables are significant in frequency on an average. 
• There is a large difference in the number of significant variables in DOG wavelet 

(remote) between phase and frequency compared to other two. 

Table 59. Netbus Trojan Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 68.7 59.
4 
 

51.7 90.6 88.1 77.8 84.9 79.8 72.
1 

Percentage 
of significant 
variables 
(Local) Frequenc

y 
39.5 30 31.4 36.1 22.2 23.7 41.6 31.8 32.

3 
Phase 64.8 69.

6 
57.5 87.1 88.1 55.3 77.1 77.7 74.

4 
Percentage 
of significant 
variables 
(Remote) 

Frequenc
y 

48.4 35.
9 

22.4 29.7 23.3 15.9 49.3 37.1 31.
2 

 
Table 59 Summary: 

• Significant variables are very high in phase factor compared to frequency. 
• 70-75% of input variables are significant in phase on an average. 
• 25-35% of input variables are significant in frequency on an average. 
• Significant variables in frequency are relatively high compared to other attacks. 
• DOG shows higher significant variables in phase compared to other two in local 

and remote scenario. 
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Table 60. Meteor FTP Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 59 60.7 
 

69 61.3 68.3 84.2 61.2 61.9 77.
2 

Percentage 
of significant 
variables 
(Local) 

Frequenc
y 

17 21.3 22.
9 

15.2 14.9 20.5 18.7 23.7 22.
7 

Phase 79.8 70.8 81.
7 

81.9 84.3 89.1 81.7 76.3 85.
1 

Percentage 
of significant 
variables 
(Remote) 

Frequenc
y 

19.9 27.3 33.
9 

16.5 20.6 27.3 18.9 24.6 35.
8 

 
Table 60 Summary: 

• Significant variables are very high in phase factor compared to frequency. 
• 65-75% of input variables are significant in phase on an average. 
• 20-25% of input variables are significant in frequency on an average. 
• In DOG the significant variables for frequency factor are less compared to the 

other two. 
 

Table 61. IRC Chat Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 70.4 58.
7 
 

42.3 94 92.2 80.4 81.3 77.4 68.
4 

Percentage 
of significant 
variables 
(Local) Frequenc

y 
39.9 34.

8 
31.3 33.4 29.9 29.5 40.6 37.9 34.

2 
Phase 61.9 67.

9 
44.2 88.9 92.7 81.9 77.1 83.6 75 Percentage 

of significant 
variables 
(Remote) 

Frequenc
y 

37.2 42.
4 

34.9 31 39.1 32.6 39.5 46.4 40.
2 

 
Table 61 Summary: 

• Significant variables are high in phase factor compared to frequency. 
• 70-80% of input variables are significant in phase on an average. 
• 30-40% of input variables are significant in frequency on an average. 
• Number of significant variables for frequency factor is higher than all other 

attacks except ARP poison and Netbus trojan. 
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Table 62. ARP Poison Attack 

Type of wavelet Morlet DOG/Mexican hat Paul 
Machine 01 02 03 01 02 03 01 02 03 

Phase 47.3 54.
5 
 

49.2 69.4 82.9 84.3 61.4 71.2 79.
1 

Percentage 
of significant 
variables 
(Local) Frequenc

y 
25.7 23.

6 
31.9 24.4 21.9 24.7 25.3 28.3 32.

5 
Phase 69.1 34.

6 
52.9 94.3 55.1 75.8 83.8 48.1 65.

2 
Percentage 
of significant 
variables 
(Remote) 

Frequenc
y 

43.4 19.
7 

22.2 37.5 22.5 17.5 44.3 22.6 24.
7 

 
Table 62 Summary: 

• Significant variables are high in phase factor compared to frequency 
• 60-70% of input variables are significant in phase on an average. 
• 25-30% of input variables are significant in frequency on an average. 
• Number of variables significant in phase is much higher for DOG compared to 

other two. 
 
We again give an example variable from each attack that shifts between phases and 

include a “best guess” at why this is so based on our attack profiling effort. 
Example of variables for EZPublish results are for phase, network interface packets/sec 

and frequency: TCP connections reset. Here the client connects to the server and reads a file 
back. This involves a TCP connection being established. Hence variables show a difference in 
the attack phase. In the pre attack phase, there are no connections made so no data transfers. 

Example of variables for NMAP results are for phase, TCP connections established and 
frequency, TCP Connections reset. In Nmap, a series of TCP connections are made and reset 
during the attack. Thus, the variables TCP connections established (phase) ad connections reset 
(freq) can be used to differentiate the attack from the other two phases. 

Example of variables for Netbus results are for phase, network interface packets sent/sec 
and frequency, network interface bytes sent/sec. In the Netbus Trojan attack, an installation file 
is copied from attacker to victim leading to network data transfer. Also, the victim’s screendump 
is sent to the attacker over the network in the attack phase. Thus, both these variables differ 
between attack phase and pre attack phase. 

Example of variables for Meteor FTP results are for phase, network interface packets 
sent/sec and received/sec and frequency, network interface packets / sec. These variables reflect 
network activity. During the attack, the attacker sends a long string over the network, which is 
reflected in these variables. During the pre attack/post attack phases, there is no such activity. 

Example of variables for IRC Chat results are for phase, TCP connections established. In 
this attack, clients connect to the server during the attack phase. This increases the number of 
connections established at the server. This variable can thus be used to distinguish attack phase 
from normal phase. For frequency, network interface packets sent/ sec. During the attack, after 
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connection is established between clients and server, ping packets are sent at regular intervals, 
which are reflected in the above variable. 

Example of variables for ARP Poison results are for phase, network interface packets 
sent/ sec. In this attack, an ARP packet is sent at regular intervals to the victim machine. Thus, 
this reflects in the network interface packets sent/sec variable in the attack phase. In the pre 
attack and post attack phases, there is no such activity. Thus this variable can be used to 
differentiate phases. For frequency, process (svchost) IO other bytes /sec. This variable shows 
the amount of bytes sent over the network through thesvchost processes. This is indicative of the 
ARP packets received during the attack. These packets are not received during the pre 
attack/post attack phases. 

 
4.6 Summary 
  

This section gives results of our research on discovering the characteristics of cyber 
signal and noise for cyber signal detection. We describe how we go from attack profiling (our 
previous section), to generalizing the DFCs of attacks, to applying knowledge from physical 
space signal detection to the analysis of data and verification of cyber signals. In our analysis, we 
have applied new techniques for detecting cyber attack observables, and discovered a number of 
DFCs that are useful in detecting and identifying these observables. Detecting a single 
observable is just the basis for developing a suite of cyber sensors. Many observables for cyber 
attacks are also found in normal data. This is why we need to develop a full understanding of the 
characteristics of both attack and norm data, and then group sensors (based on these observables) 
in such a way that false alarms are reduced, while maintaining detection accuracy. 

We provide a sampling of our data analysis results. The actual amount of results that we 
have collected thus far is well beyond the scope of this report. Therefore, we attempt to 
summarize some key examples of how we are using the data we have collected to extract 
characteristics of cyber signals. The purpose of this investigation is to find characteristics and/or 
groups of characteristics that can uniquely identify attacks or classes of attacks. We use these 
results to build our sensor models, as described in the next section. 
 
5. Sensor and Sensor Fusion Models 
 

In the last section on the discovery of characteristics of cyber signal and noise we 
described how to go from attack profiling, to generalizing the DFCs of attacks, to applying 
knowledge from physical space signal detection to the analysis of cyber attack data. That section 
gives a sample of our results on the analytical discovery of characteristics of cyber signals. 
Previous sections on attack profiling and the analytical discovery of cyber attack and normal use 
characteristics provide us with the ability to develop sensor models and sensor fusion models for 
cyber attack detection. First we give some relevant background material. Then provide examples 
of sensor and sensor fusion models. Finally, we conclude this section. 
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5.1. Background 
 
 In this section we give the background information necessary to understand the sensor 
and sensor fusion models presented in this section. We first introduce 2 user activities to our 
dataset. We then present the 3 previously described attacks we consider for this work. Finally, 
we outline the analytical discovery methods used here. 
 
5.1.1 Activity Data 

 
To design and test a sensor model, in addition to attack data characteristics, we require 

the characteristics of normal user activity data. For this section, we consider 2 common 
activities: web browsing and text editing. During the simulation of an attack as described in 
previous sections, we have a user conducting the respective activity at the victim machine. The 
user activity continues throughout the simulation phases. This way, we are able to collect data 
with only user activity, and data with both attack and user activity. With the user activity data we 
discover characteristics of normal use (noise). The analysis for user activity is the same as the 
analysis we reported for attack activity. We use the analytical results from both user activity and 
attack data to build models. The combined data is for testing our models. 

 
5.1.2 Attack Data 
  

We use data collected from 3 attacks simulated in the lab: ARP Poison, EZPublish 
Confidentiality and NMAP Scanner. These attacks are simulated without user activity, as stated 
previously, to discover attack characteristics. We choose these 3 attacks arbitrarily from our 
attack data set and simulate them again with user activity for testing. (We do not include testing 
on all 6 attacks in this report due to time constraints). 
 
5.1.3 Analytical Discovery 

 
Previously we described how to profile attacks and obtain the DFC of an attack. We 

simulated several attacks and, using analytical discovery methods, derived matrices of observed 
DFCs for each attack. For each DFC, we have multiple choices of detection method. In this 
section, we consider the DFCs for the 3 attacks described above. We select analysis methods to 
build our sensor models upon and describe them below. These two methods use the techniques: 
Paul wavelet, cuscore and autocorrelation. These are described previously in detail and 
summarized here. 

 
Method 1 – Wavelet with Cuscore 
Wavelet analysis converts time series data into frequency and analyzes the pattern of the input 
data, and the different frequency components and their signal strengths. We choose the Paul 
wavelet transformation based on its superior performance in our previous analysis. 
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Method 2 - Autocorrelation 
“Autocorrelation is the expected value of the product of a random variable or signal realization 
with a time-shifted version of itself” (http://cnx.rice.edu/content/m10676/latest/). We use 
autocorrelation analysis to detect whether a variable changes its autocorrelation between the pre-
attack (pre-activity) and attack (activity) phases of our simulation. 

 
5.2 Sensor Models 
 

We developed sensor models using the data we colleted in our attack simulations. The 
sensors are first developed and tested with offline data, as shown in Figure 28. After finalizing a 
sensor model offline, we verify that the sensor works online, with data collected in real time 
during an attack. Our online simulations have a similar setup to offline simulations. The only 
difference is that the sensor models are reading data as it occurs, and reacting accordingly, 
instead of waiting until all data is collected. 

 

Figure 28. Building sensor models offline 
 
We develop sensor models using data from 3 attacks and the DFC and detection 

techniques described in the previous section. We include the 2 user activities in our testing 
phase. We first build a model using Paul wavelets and the Cuscore statistic. We then build a 
model using autocorrelation and the Cuscore statistic. Table 63 describes the DFC mapping for 
the sensor models presented in this section. 
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Table 63. DFC Mapping for Sensor Models 

Sensor Model Paul Wavelet & Cuscore
Noise Model Attack Model

Data Raw data variable Raw data variable
Feature y  = Energy Frequency y  = Energy Frequency
Characteristic

Sensor Model Autocorrelation & Cuscore
Noise Model Attack Model

Data Raw data variable Raw data variable

Feature
y  = Mean # of significant 
autocorrelation functions

y = Mean # of significant 
autocorrelation functions

Characteristic 0tt aTy +=

tt aTy ++= δ

tt aTy ++= δ0tt aTy += tt aTy ++= δ

0tt aTy +=

 
 
5.2.1 Model Based on Paul Wavelet & Cuscore Statistic 
 

The steps outlined below describe our first detection model. These steps are also outlined 
in Figure 29: 

1. From our analysis previously detailed, we find that Paul is the most useful wavelet 
because most of the data form a spike pattern. 

2. We pick variables discovered through sensor optimization (following section) and begin 
by extracting the variables from our data sets individually and storing them as a text file. 
This input file is a time series data with 500-600 observations. 

3. The input is given to a wavelet program to calculate the Paul wavelet coefficients. 
4. Once data is transformed into the wavelet domain, the wavelet coefficients are converted 

into energies by squaring and summing. These calculated energy values in the wavelet 
domain define the feature that is tested in this model. 

5. The characteristic we observe for all selected variables is a step change. Thus, we choose 
the Cuscore statistic for step change as our detection model. 

6. This model is basically the summation at each point of the difference between each 
observation and a threshold obtained from the normal scenario. This model has an 
implicit noise filtering component because the difference is calculated based on a 
threshold derived from the normal model. 

7. The calculated wavelet energy values form the observations for Cuscore. We obtain 
cuscore values and plot them to identify the step change. 
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Figure 29. Steps for the Paul wavelet & Cuscore statistic model. 

 
5.2.2 Model Based on Autocorrelation & Cuscore Statistic 
 
 Our next detection model uses autocorrelation with the same Cuscore for step change as used in the 

previous model. The steps are outlined as follows and shown in  
Figure 30: 

1. We choose variables and analytic discovery methods based on our sensor optimization 
study (following section). 

2. We extract variables and store them in text file formats. 
3. We separate the extracted normal activity datasets into two sections. The first half serves 

as training data to calculate the normal mean in the Cuscore model, while the latter is 
used, along with data from normal+attack activity, for testing. 

4. The numbers of significant autocorrelation functions are calculated on both data using the 
moving window method, with a window of size 60 observations. The means of the 
numbers of significant autocorrelation functions are calculated for the input to Cuscore. 

5. We plot the Cuscore results for each sensor to observe false alarms, signal indications 
and first indications of attacks. 

Selected 
variable –Raw 
attack data 

Wavelet coefficients-
using Paul wavelet 
transforms 

Wavelet energy-
sum of squares of 
the wavelet 
coefficients 

Threshold for detection-
mean of first half of 
wavelet energies from 
normal activity data 

Cuscore for step 
change. 
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Figure 30. Steps for the autocorrelation & Cuscore statistic model. 

 
5.3 Sensor Fusion Models 
 

We develop our fusion and decision theory based on the unique vector or specific 
knowledge about the attack rather than a general, existing decision or fusion theory. To perform 
sensor fusion, we consider the results of our 2 sensor models described previously. During our 
attack simulations, we collect data both locally at the victim computer, and remotely. For remote 
data collection, performance data from the victim machine is sent across the network and logged 
at another location. We present our results for both collection methods for these sensor models. 
Our threefold objective is to determine which sensor model gives: The highest detection rate, the 
lowest false alarm rate, and the earliest signal detection 

In this section we present the results for testing observables identified in our sensor 
optimization efforts (following section). These results include specific variables and detection 
methods identified as sufficient to detect and differentiate the 3 attacks with 2 user activities 
described previously.

Selected 
variable – 
Raw attack 
data 

The numbers of 
significant autocorrelation 
functions using moving 
window of size 60

Threshold for detection – 
mean of first half of number 
of significant autocorrelation 
functions from normal 
activity data 

CUSCORE 
value based on 
autocorrelations 
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  Table 64 lists the sensors we develop and tests completed for each sensor. 
 

Table 64. Sensor testing outline 

Sensor 
# Sensor Model Data Variable Attack Activity 

Data 
Collection
Local Web 

Browsing Remote 
Local 

1 Paul Wavelet Process(_total)IO other 
operations/sec 

ARP 
Poison 

Text Editing 
Remote 
Local Web 

Browsing Remote 
Local 

2 Paul Wavelet TCP\Segments/sec EZ 
Publish 

Text Editing 
Remote 
Local Web 

Browsing Remote 
Local 

3 Autocorrelation 

Network Interface(Intel[R] 
PRO_100 VE Network 
Connection - Packet Scheduler 
Miniport)\Bytes Sent/sec 

ARP 
Poison 

Text Editing 
Remote 
Local  Web 

Browsing Remote 
Local 

EZ 
Publish 

Text Editing 
Remote 
Local  Web 

Browsing Remote 
Local 

4 Autocorrelation 
Terminal Services 
Session(Console)\Page 
Faults/sec 

NMAP 
Text Editing 

Remote 
 

We have checked that all characteristics for the sensors in Table 64 do not appear in the 
characteristics for normal activities, and thus are indicative of an attack for our data set. In this 
section, we first present the testing results for our sensor models, and then offer some 
observations for sensor fusion on these sensors. 

 
5.3.1. Testing Results 
 

This section separates the results obtained by each of our 3 sensor models. Each section 
includes the Cuscore charts for each variable, attack, activity, and local/remote configuration. 
For each plot in this section, the following descriptions hold: 

1. The x-axis is observations in time. 
2. The y-axis is the Cuscore value. 
3. The first 287 observations are normal activity data to check false alarm pattern and the 

rest of the observations form the attack data. 
4. The figure name gives the name of the observed variable, the attack and user activity 

present, and whether the data is from a local or remote collection. 
We use the results shown in Figures 30-49 to complete Table 65 and Table 66, from which we 
make observations for sensor fusion. 
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5.3.1.1 Paul Wavelet & Cuscore Statistic 
 

The Cuscore results for this model are shown in Figure 31-Figure 38. 
 

 

Figure 31. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Local. 

 

Figure 32. Process(_total)IO other operations/sec, ARP Poison, Web Browsing, Remote. 
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Figure 33. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Local. 

 
Figure 34. Process(_total)IO other operations/sec, ARP Poison, Text Editing, Remote. 
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Figure 35. TCP\Segments/sec, EZPublish, Web Browsing, Local. 

 
Figure 36. TCP\Segments/sec, EZPublish, Web Browsing, Remote. 
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Figure 37. TCP\Segments/sec, EZPublish, Text Editing, Local. 

 
Figure 38. TCP\Segments/sec, EZPublish, Text Editing, Remote. 
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5.3.1.2 Autocorrelation & Cuscore Statistic 
 
 The Cuscore results for this model are shown in Figure 39-Figure 50. 
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Figure 39. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet 

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Local. 
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Figure 40. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet 

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Web Browsing, Remote. 
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Plot of variable: Bytes Sent/sec_Text_Local
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Figure 41. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet 

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Local. 
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Figure 42. Network Interface(Intel[R] PRO_100 VE Network Connection - Packet 

Scheduler Miniport)\Bytes Sent/sec, ARP Poison, Text Editing, Remote 
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Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local
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Figure 43. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing, 

Local. 

Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Remote
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Figure 44. Terminal Services Session(Console)\Page Faults/sec, EZPublish, Web Browsing, 

Remote. 
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Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local
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Figure 45. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing, 

Local. 
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Figure 46. Terminal Services Session (Console)\Page Faults/sec, EZPublish, Text Editing, 

Remote. 
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Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local
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Figure 47. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing, 

Local. 
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Figure 48. Terminal Services Session (Console)\Page Faults/sec, NMAP, Web Browsing, 

Remote. 
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Plot of variable: Terminal Services Session (Console)\Page Faults/sec_Local
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Figure 49. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing, 

Local. 
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Figure 50. Terminal Services Session (Console)\Page Faults/sec, NMAP, Text Editing, 

Remote. 
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5.4 Sensor Fusion 
  

In this section we include the performance summaries of our sensor models in Table 65 
and Table 66. From these tables we can make observations for sensor fusion. 
 

Table 65. Paul wavelet and Cuscore statistic 

Data Collection  Local Remote 
Attack  ARP EZPublish ARP EZPublish 

Variable  Process TCP Process TCP 
Web browsing     
False alarm indications 0 5 2 6 
Signal indications 1 2 4 1 
First observation of signal  288 312 300 292 
Text editing     
False alarm indications 0 0 2 2 
Signal indications 1 1 5 2 
First observation of signal  288 288 288 288 

 
 

Table 66. Autocorrelation and Cuscore Statistic 

Data Collection  Local Remote 
Attack  ARP EZPublish NMAP ARP EZPublish NMAP 

Variable  Network Terminal Terminal Network Terminal Terminal
Web browsing       
False alarm indications 2 3 1 5 2 2 
Signal indications 5 1 9 7 1 5 
First observation of signal  297 311 295 466 297 313 
Text editing       
False alarm indications 6 2 1 3 4 0 
Signal indications 8 2 3 6 1 4 
First observation of signal  355 291 301 287 301 385 

 
During our study, we observe that network variables are affected by remote data 

collection. Furthermore, we observe consistently throughout our analytical research that using 
the local data (as opposed to remote) gives better attack detection for the variables considered in 
these sensor models. Thus, from the results presented in Table 65 and Table 66 we make some 
example observations for sensor fusion based on the local data collection results. 

Note that for the ARP attack, the wavelet sensor detects the attack at data point 288, 
whereas the autocorrelation sensor does not detect it until points 297 during web browsing, and 
355 during text editing. Thus, under each of these activities, the fused model of these two sensors 
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would not flag this attack using these variables until times 297 and 355 respectively. Thus, both 
sensors must observe the attack signal for detection. 

For the EZPublish attack autocorrelation is the early detector during web browsing and 
wavelet during text editing. Thus, the earliest attack detection time for this attack, based on the 
last sensor detection, is 312 for web browsing and 291 for text editing. 

The NMAP attack has only one sensor in this optimized model set, and thus there is no 
sensor fusion for this attack alone. 
 
5.5 Conclusion 

 
In this section, we have extended our analytical discovery results to develop sensor 

models for cyber attack detection. We test these models under 2 user activity and 2 data 
collection method conditions. The sensor models we design are based on the sensor optimization 
section. These sensors are the minimum required to detect and distinguish between the 3 attacks 
presented in this section. The sensor models we provide are merely samples. There are many 
other possible models we can develop and test based on our analytical discovery. These methods 
of sensor model development and fusion can be extended to include any attack or user activity 
for which we have identified DFCs to identify that activity. 

 
 

 
6. Optimized Suite of I&W Observables/Cyber Sensors 
 
 In a parallel study, we build sensor models for cyber attack detection. To obtain 
efficiency, we desire to create the minimum number of sensors possible while maintaining 
effective attack detection. We employ optimization techniques from operations research to 
determine the sensor set. This section gives an example for sensor optimization using the 
analytical discovery results from our previous study on cyber attack characteristics. 
 
6.1 Sensor Matrix 
 
 To develop an optimized suite of cyber sensors, we define a sensor matrix. An example 
sensor matrix is shown in Table 67. In this matrix we used data from 7 data sets to include 6 
attacks as described in our previous sections, and one data set provided by an external source. 
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Table 67. Matrix of Cyber Sensors 

 NMAP Meteor 
FTP 

EZ 
Publish 

IRC 
Chat 

ARP 
Poison 

Netbus 
Trojan 

Nong3 

Cache\Data 
Flushes/sec 

  (P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

  Diff(+)  

Cache\Async Copy 
Reads/sec 

   LH- LH-  -L- 

IP\Datagrams/sec Diff(+) 
(P,-,L) 
(D,-,L) 

 (P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

    

Memory\Page 
Reads/sec 

   LH- 
(P,-,L) 
(D,-,L) 

(P,+,L) 
(D,+,L) 

 -H- 

Memory\Page 
Writes/sec 

     (P,+,L) 
(D,+,L) 

-HH 

Memory\Available 
Bytes 

    Diff(-) 
-UniUni 

Diff(-)  

Memory\% 
Committed Bytes In 
Use 

  -Normal- 
(P,-,L) 

 -UniUni 
(P,-,L) 
(D,+,L) 

  

Memory\Cache 
Faults/sec 

  -Normal- 
(P,-,L) 

  Diff(+) 
LHL 

 

Network 
Interface(Intel[R] 
PRO_100 VE 
Network Connection 
- Packet Scheduler 
Miniport)\Bytes 
Sent/sec 

   LHL 
(P,-,L) 
(D,-,L) 
(D,-,M) 

LHL 
(P,+,M) 
(D,+,H) 

(P,-,L) 
(D,-,L) 

Absent 
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Network 
Interface(Intel[R] 
PRO_100 VE 
Network Connection 
- Packet Scheduler 
Miniport)\Packets 
Received 
Unicast/sec 

Diff(+) 
(P,-,L) 
(D,-,L) 

(P,-,L) 
(D,-,L) 

  (P,+,M) 
(D,+,H) 

  

Network 
Interface(Intel[R] 
PRO_100 VE 
Network Connection 
- Packet Scheduler 
Miniport)\Bytes 
Total/sec 

 (P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 

 (P,-,L) 
(D,-,L) 
(D,-,M) 

   

Objects\Events  Diff(+) 
HLH 

    Diff(+) 

Process(_Total)\Pag
e File Bytes 

  -Normal- 
(P,-,L) 
(D,-,L) 

 -UniUni 
(P,-,L) 
(D,+,L) 

  

Process(EXPLORE
R)\IO Read 
Bytes/sec 

   LH- LH-   

Process(Meteor#1)\I
O Other 
Operations/sec 

Diff(+) LHL      

Process(Meteor#1)\
Handle Count 

Diff(+) Diff(+)      

Processor(_Total)\% 
Processor Time 

Diff(+)  Diff(+) 
(P,-,L) 

    

System\File Read 
Operations/sec 

LHL     Diff(+)  

System\System 
Calls/sec 

 Diff(+) 
(P,-,L) 
(P,-,M) 
(P,-,H) 
(D,+,M) 
(D,+,H) 

(P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

 (P,-,L) 
(D,+,L) 

  

TCP\Segments/sec Diff(+) 
(D,-,L) 

  (P,-,L) 
(D,-,L) 

 (P,-,L) 
(D,-,L) 

Diff(+) 

Terminal Services 
Session(Console)\Po
ol Nonpaged Bytes 

 Diff(+) 
HLH 
(P,-,L) 
(D,-,L) 

   Diff(+)  
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Terminal Services 
Session(Console)\In
put WdFrames 

   Diff(-) 
LHH 

LHH 
(P,-,L) 
(P,-,M) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

  

Terminal Services 
Session(Console)\In
put Compressed 
Bytes 

   Diff(?) 
LHH 
(P,-,L) 
(P,-,M) 
(D,-,L) 
(D,-,M) 

LHH 
(P,-,L) 
(P,-,M) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

  

Terminal Services 
Session(Console)\In
put Async Frame 
Error 

Diff(-) 
(P,+,L) 
(D,-,L) 

  Diff(+) 
(P,+,L) 
(D,+,L) 

   

Terminal Services 
Session(Console)\Pr
otocol Bitmap Cache 
Hits 

Diff(+) 
-Normal- 

    (P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

 

Terminal Services 
Session(Console)\Pa
ge Faults/sec 

Diff(-) 
HLL 
(P,+,L) 
(D,-,L) 

HL- 
(P,-,L) 
(D,-,L) 

Diff(-) 
HLH 

    

UDP\Datagrams/sec Diff(+) 
(D,-,L) 

(P,-,L) 
(P,-,M) 
(P,-,H) 
(D,-,L) 
(D,-,M) 
(D,-,H) 

 (P,-,L) 
(D,-,L) 

   

 
To simplify the display of the table, we have shortened the descriptions in the table cells. 

The characteristic listed in each cell is a characteristic of the variable from column one, and the 
attack data from row 1. The entries in the matrix shown in Table 67 are defined as follows: 

• Entries of the form Diff(+) or Diff(-) represent a positive or negative shift in the 
difference in means. 

• Entries of the form XXX, where X is L, H or “-“ represent autocorrelation results 
where L is low, H is high, and “-“ is none. 

• Entries of the form XXX, where X is normal, uni or “-“ represent distribution results 
where the distribution is with normal, uniform (uni) or unknown (-). 

• Entries of the form (X,+,Y) or (X,-,Y) represent wavelet results where the first 
element indicates the wavelet (P for Paul, D for DOG), the second element indicates 
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increase (+) or decrease (-) from pre-attack to attack, and the third element indicates 
the frequency band of low (L), medium (M) or high (H). 

Cells with multiple entries indicate different sensor models that can be used to detect a 
characteristic for that variable and that attack. When we optimize the table, if one of these sensor 
“sets” is chosen, we can select which of the sensors to use. These sensors and variables are in no 
particular order. 
 
6.2 Sensor Optimization Solution 

 
We find the smallest subset of sensors that can uniquely identify the given seven attacks. 

This is our optimal collection of sensors. In this section we first present the resulting optimized 
sensor matrix, and then provide a proof that this table is indeed optimal. This subset was 
discovered using a manual heuristic based on finding a feasible solution and proving its 
optimality. The method is revealed in the optimality proof at the end of this section. The optimal 
solution is shown in Table 68. Note that the original input matrix from Table 67 held 28 sensors, 
while the optimized solution leads to a smallest subset of only 4 sensors. 

Table 68. Optimal Solution 

Sensor 
# Data Variable NMAP

Meteor 
FTP 

EZ 
Publish

IRC 
Chat 

ARP 
Poison 

Netbus 
Trojan Nong3

1 
Process(_total)IO other 
operations/sec   (P,-,L)     (P,-,L)   (P,-,L) 

2 TCP\Segments/sec     (P,-,L) (P,-,L)   (P,-,L)   

3 

Network Interface(Intel[R] 
PRO_100 VE Network 
Connection - Packet 
Scheduler Miniport)\Bytes 
Sent/sec       LH LH     

4 

Terminal Services 
Session(Console)\Page 
Faults/sec 

HL HL HL   

  

  

  
 
Proposition 1. The solution in Table 68 is optimal. 
Proof: The structure of the given problem is the same as that of the binary identification 
problem. In the binary identification problem, the minimum number of sensors that could 
uniquely identify 7 different attacks is 3. (23 − 1 = 7, since (000) doesn’t count). The optimal 
solution with 3 binary sensors is shown in Table 69. 
 

Table 69. Optimal solution with 3 binary sensors 

Sensor 
# NMAP 

Meteor 
FTP 

EZ 
Publish

IRC 
Chat 

ARP 
Poison

Netbus 
Trojan Nong3 

1 0 0 1 1 1 0 1 
2 0 1 0 1 0 1 1 

3 1 0 0 0 1 1 1 
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Notice that in the 3-binary-sensor case each sensor has to identify at least 4 different 
attacks. However, the maximum number of attacks one type of sensor could possibly identify is 
3 in the given matrix. Therefore, the solution with 4 sensors in Table 68 is optimal. 

 
6.3 Conclusion 

 
In this section, we have shown how to define an optimization table to minimize the 

number of sensors required to detect a subset of attacks. For this small input table, it is trivial to 
find the optimal set manually. For larger input tables, any number of optimization tools can be 
employed for this task. Thus, optimization can be applied to any input matrix of sensors, and 
thus is extensible to any number of attack and activity data characteristics provided to the 
optimization problem. 

 
7. Symantec Final Report 

 
This final report documents the activities of Symantec Research Labs (Symantec) on the 

research project of Arizona State University (ASU) for ARDA’s Cyber Indications and Warnings 
program. The purpose of this project is to study techniques and develop technologies that might 
provide improved indications and warnings (I&W) for cyber attacks. 

After this introductory section, this final report is divided into seven sections according to 
the statement of work between Symantec and ASU, describing the activities of Symantec with 
respect to our contractual tasks: 

 
• Task 1 – Collect and examine known cyber attack cases and scenarios to develop threat 

and attack profiles. 
• Task 2 – Discover characteristics of cyber signal and noise (attack data and normal data) 

at each observable point. 
• Task 3 – Investigate, develop and test sensor models of signal detection, and a sensor 

fusion model for each observable point. 
• Task 4 – Formulate and solve an optimization problem to select an optimized suite of 

I&W observables / cyber sensors. 
• Task 5 – Test and verify research outcomes using real information infrastructure data that 

is available at Symantec. 
• Task 6 – Provide documents that reflect monthly status and final technical report. 
• Task 7 – Participate in project meetings as necessary. 

 
The final section of this report presents a summary and conclusions. The five technical 

tasks (tasks 1-5) were conducted on two separate investigations, each addressing a different kind 
of attack in a different target environment from ASU’s investigation.  ASU developed the cyber 
signal detection approach to predictive analysis and investigated that approach.  Symantec’s first 
investigation employed ASU’s cyber signal detection concepts to explore insider attacks against 
databases.  Symantec’s second investigation employed ASU’s cyber signal detection approach to 
explore virus/worm attacks in a local area network. The database investigation was focused on 
insider attacks at the application layer. 
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Symantec sought to utilize as much as possible the procedures and research outcomes 
provided by ASU, evaluating those against malicious code at our disposal at Symantec. ASU 
provided Symantec with their statistical analyses to run against data collected during attack 
simulation. Thus, results in this section follow the same approach as described in previous 
sections in this report. The relevant sections can be reviewed for more detail wherever necessary. 
 
7.1 Task 1 – Collect and examine known cyber attack cases and scenarios to 
develop threat and attack profiles. 

 
Symantec collected and examined known cyber attack cases and scenarios to develop 

threat and attack profiles in both the database domain and the virus/worm domain. In the 
database domain, Symantec collected and examined attack scenarios and developed attack 
profiles for insider attacks reading confidential data. In the virus/worm domain, Symantec 
collected and examined attack scenarios and developed attack profiles for the Sobig e-mail virus. 
The remainder of this section provides details regarding those attack scenarios and attack 
profiles. 
 
7.1.1 Database Attacks 
 

The database investigation began with a broad examination of known cyber attacks in the 
database domain.  Figure 51 shows a collection of attacks, classified according to a taxonomy 
developed by ASU. The attacks are given mnemonic names and are organized by 
“vulnerability”. 
 

Attack Action Target State Effects Performance Effects
Configuration

Extract-admin-data Read|Steal Data Confidentiality None
Alter-admin-tables Modify|Delete|Add Data All All
Monitor-other-DB-activities Eavesdrop Data|User Confidentiality|Availability Timeliness
Privilege-escalation-or-bypass Bypass System All All
Administrative-DOS Termination|Execute System Availability Timeliness
Corrupt-stored-procedures Modify|Delete System All All
Corrupt-native-libraries Modify|Delete System All All
Attack-os-using-DB-process-privs Bypass System All All
Install-unauthorized-components Modify System All All
Alter-admin-activities Modify|Delete|Add System All All
Corrupt-future-installations Modify|Delete|Add System All All

Specification
Probe-read-confidential-data Probe System Availability Timeliness
Probe-bypass-privilege-system Probe System Availability Timeliness
Query-flood Flood System Availability Timeliness

User Trust
Read-confidential-data Read Data Confidentiality|Availability Timeliness
Corrupt-data Delete|Modify|Add Data Integrity|Availability All

All State Effects = 'Confidentiality' | 'Availability' | 'Integrity'
All Performance Effects = 'Timeliness' | 'Precision' | 'Accuracy'
Source of threat = 'Any'
Agency = Most may be either 'Human' or 'Autonomous'
Attack Origin = 'Local' | 'Remote (single source)' | 'Remote (multiple source)'

Our focus

 
Figure 51. Collection of attacks for this study 
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Because of the large number and heterogeneity of database attacks it was necessary to 
focus the investigation.  The “read-confidential-data” attack was selected as a primary area of 
focus. This attack simply involves a user reading some confidential data for nefarious purposes. 

The “read-confidential-data” attack has an infinite number of variations.  Following the 
pattern being used at ASU, the generic “read-confidential-data” attack was explored by creating 
an attack profile.  The purpose of the attack profile is to identify relevant observables and likely 
features of attacks. Figure 52 shows the cause-effect chain – a graphical representation of 
activity-state-performance interactions within an attack – of the attack profile for the generic 
“read-confidential-data” database insider attack. 

 

Figure 52. Attack profile for database insider attack 
 

The observations for the generic “read-confidential data” database insider attack are 
shown in Table 70. 

State 1: User trust compromised 

Attack Phase   

Observation B :  
Reconnaissance queries 
by user 

Activity 1: Attacker probes for valuable
data by initiating queries.   

Activity  0 : Login to the database by a 
trusted user   

State 2: Availability compromised, by use
of shared resources   

Performance  1 : Timeliness 
compromised, by use of shared resources 
  
  

Observation C:  
Data collection queries 
by user 

Activity 2: Attacker queries
database/extracts valuable information. 

Observation A :  
Connection by DB user  
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Table 70. Observations for database insider attack 

A Connection by database user 
B Reconnaissance queries by user 
C Data collection queries by user 

 
The attack profile – including DFCs for each observable point – is provided in Table 71. 
 

Table 71. DFC’s for database confidentiality attack 
OBS Indicator Data Feature Characteristic

1 Time of connection and database user ID Individual observation Outside historical range

2 EWMA of duration of connection/session by user Chi-squared distance Step change

3 Number of tables outside historic range accessed 
by user within time interval t Individual observation Greater than <threshold>

4 EWMA of InterArrival Time of queries from the 
same user Chi-squared distance Step change

5 EWMA of queries selecting no data within time 
interval t (i.e., requested data not found) Chi-squared distance Step change

6 EWMA of size of query text Chi-squared distance Step change

7 EWMA of ratio of SELECT queries to other queries 
within time interval t Chi-squared distance Step change

8 EWMA of pairwise semantic distances between 
relations and attributes of successive queries Chi-squared distance Step change

9 EWMA of Number of queries using stored 
procedure in time interval t Chi-squared distance Step change

10 EWMA of Number of SQL constructs used in 
queries in time interval t Chi-squared distance Step change

11 Number of tables outside historic range accessed 
by user within time interval t Individual observation Below <threshold>

12 EWMA of Interarrival times of queries to same table Chi-squared distance Step change

13 EWMA of Number of queries using stored 
procedure in time interval t Chi-squared distance Step change

14 Ratio of rows retrieved during session to total rows 
in table Mean Increase

15 Ratio of columns retrieved during session to total 
columns in table Mean Increase

16 EWMA of Interarrival times of queries Chi-squared distance Step change

17 EWMA of pairwise semantic distances between 
relations and attributes of successive queries Chi-squared distance Step change

18 EWMA of number of SQL constructs Chi-squared distance Step change

B

A

C

 
 
There is no data dependent relationship amongst the observations. The attack formula for 

the generic “read-confidential-data” database insider attack is the following: 
A(ti…j, l1) → B(tk…m, l1) → C(tn...p, l1), where i<j<k<m<n<p and l1 = host 
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7.1.2 Virus/Worm Attacks 
 

There are many known cyber attack cases in the virus/worm domain.  Symantec as a 
corporation has studied a large percentage of known examples of malicious code and produces 
descriptions for many of them, available at www.symantec.com.  Each malicious code attack has 
specific characteristics, observables, and effects worthy of study, but clearly our investigation 
could not address all such attacks.  Symantec chose a representative instance of one large class of 
malicious code attacks, e-mail viruses, for our virus/worm investigation. 

Sobig is an e-mail virus from 2003.  There were multiple variants of Sobig over the 
course of that year; the particular variant that Symantec studied was Sobig.f.  Like many e-mail 
viruses, Sobig arrived in a user mailbox as an executable attachment within an infected e-mail.  
When a user ran the executable attachment, the virus would search the hard drive for e-mail 
addresses and e-mail a copy of itself to those new addresses. 

The observations for the Sobig e-mail virus are shown in Table 72. 
 

Table 72. Observations for the Sobig e-mail virus 

A E-mail infected with Sobig worm received in user’s mailbox 
B New process, the Sobig worm, started by user 
C New files created by worm 
D New values added to the startup keys of the registry 
E New worm process starts and original worm process is terminated 
F New event created 
G New threads created 
H Higher CPU utilization as threads search for e-mail addresses 
I Higher file system activity as threads search for e-mail addresses 
J Increased network activity as threads send out infected e-mails 
K Mail activity at mail server as infected e-mails arrives 
L UDP packets initiating download sent to update servers 
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The Table 73 – including DFCs for each observable point – is provided below. 
 

Table 73. DFC’s for Sobig 
Obs Location Data Feature Characteristic 

L1 New email in the user's inbox 
(not monitored currently) 

Individual 
observation 

 

9 possible subject lines, 9 
possible attachment file names, 

and 2 possible body lines A 

L4 New email, with destination 
email address of victim 

Individual 
observation 

 

9 possible subject lines, 9 
possible attachment file names, 

and 2 possible body lines 

B L1 Name of new process created Individual 
observation Has 9 possible names 

C L1 Filename of newly created file 
Individual 

observation 
 

“%Windir%\ winppr32.exe” 

D L1 

Value of data added to registry 
key 

HKEY_LOCAL_MACHINE\ 
SOFTWARE\ Microsoft\ 

Windows\ CurrentVersion\ Run 

Individual 
observation 

 

“TrayX”=“%Windir%\ 
winppr32.exe /sinc” 

 

E L1 Name of old process terminated Individual 
observation 9 possible names 

 L1 Name of new process running Individual 
observation “winppr32.exe” 

F L1 Value of event created Individual 
observation “TrayX” 

G L1 Process object -> thread count 
for winppr.exe process EWMA Step increase 

L1 Process object -> % processor 
time for winppr.exe process EWMA Step increase 

H 
L1 Filenames of files accessed on 

disk 
Type of file 

accessed 
One of ".dbx, .eml, .hlp, .htm, 

.html, .mht, .wab, .txt" 

I L1 Process object -> IO data 
bytes/sec for process winppr.exe EWMA Increase 

L1 IP packets sent/sec from 
performance log EWMA Step increase 

L2 IP packets received/sec and 
sent/sec from the router’s log EWMA Step increase J 

L4 IP packets received/sec from 
performance log EWMA Step increase 

K L4 E-mails received/sec EWMA Step increase 

L L1 DEST IP field of UDP packets, 
with SRC_port = 8998 

Count of 
unique 
values 

Equals 20 

 
The attack formula for the generic “read-confidential-data” database insider attack is the 

following: 
 
A (ti, l1) || A (ti, l4) -> B (tj, l1) → C (tj..k, l1), D(tj..k, l1), E(tm, l1)  
→ F (tm..n, l1), G (tm..n, l1), H (tn..p, l1), I (tn..p, l1), L (tq..r, l1)  
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→ J (tq..r, l1) || J (tq..r, l2) || J (tq..r, l4) → K (tq..r, l4) 
where l1 = host, l2 = router of victim network, l4 = mail server and i<j<k<m<n<p<q<r 

 
7.2 Task 2 – Discover characteristics of cyber signal and noise (attack data and 
normal data) at each observable point. 
 

Symantec discovered characteristics of cyber signal and noise in the virus/worm domain 
for the Sobig e-mail virus at the following observable points: 

• the attacker machine’s performance variable monitor 
• the victim machine’s performance variable monitor 
• the bystander machine’s performance variable monitor 
• the mailserver machine’s performance variable monitor 

The characteristics of cyber signal and noise that we discovered for the Sobig e-mail 
virus include the following: 

There is a baseline of pairwise Pearson correlation between variables, even when there is 
no user activity, as demonstrated by the pre-attack phase on each machine during every 
experiment.  The non-zero, non-invaried performance variables are likely caused by operating 
system and services’ process activity.  The pairwise correlation amongst those performance 
variables is likely because some or all the variables for each performance object are pairwise 
correlated independent of the activity on the machine.  This baseline activity and correlation is a 
form of cyber noise with respect to the performance variable observable point. 

In the experiment with only attack activity, on all four machines the percentage of 
pairwise correlated variables decreases from the pre-attack to the attack phase as attack-related 
activity occurs.  This is most surprising on the bystander machine, which should be relatively 
unaffected by the attack activity.  Nevertheless, this indicates that cyber signal creates a drop in 
pairwise correlation among performance variables for the Sobig e-mail virus experiment. 

Going from the attack to the post-attack phase in the experiment with only attack activity, 
on the attacker and mail server machines there is a slight increase in pairwise correlation 
percentage, and on the victim machines there is a slight decrease.  The attacker and mail server 
machines will have more attack activity than the bystander and victim machines again indicating 
that stronger cyber signal has an effect on the percentage of pairwise correlation among 
performance variables in the case of the Sobig e-mail virus. 

In the experiments with attack and normal data (FTP and text editing user activity), the 
percentage of pairwise correlated variables on the victim machine is lower during the attack 
phase (with user activity continuing concurrently) than in the pre-attack with user activity phase.  
These results are similar to the results on the victim machine in the experiment with only attack 
data.  The characteristic of cyber signal that is confirmed is that attack activity lowers the 
percentage of correlated performance variables, for variables that are non-zero and non-invaried 
within any given phase, in the case of the Sobig e-mail virus.  (The results when using the same 
set of non-zero, non-invaried variables across all phases are different in the text editing 
experiment.) 

In the text editing experiment, the post-attack phase has the smallest correlation 
percentage of any of the five phases on the victim machine. For the FTP experiment, it has the 
least number of significant correlations. The distinction between “smallest correlation 
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percentage” and “least number of significant correlations” is that “correlation percentage” is the 
“number of significant correlations” divided by the total cells (the number of comparisons 
possible between non-zero, non-invaried variables). The “number of significant correlations” is 
determined by the Pearson correlation analysis. The “total cells” is determined in a pre-analysis 
stage when performance variables that are all zeroes or all the same value are thrown out, leaving 
only the non-zero, non-invaried variables for Pearson correlation pairwise comparisons.  
Therefore, the “correlation percentage” divides the “number of significant correlations” by the 
“total cells” to calculate a percentage, versus simply looking at the raw number of significant 
correlations. 

• With the start of user activity in the text editing experiment, there is a decrease in the 
correlation percentage from the pre-attack stage on the victim machine.  In the FTP 
experiment though, there is a slight increase in correlation percentage when user 
activity starts.  This is likely caused by the difference in activity type and its effect on 
performance variables – highly network-intensive user activity appears to be more 
correlated. 

• The post-attack with user activity phase on the victim machine in the FTP experiment 
exhibits a similar correlation percentage to the pre-attack with user activity phase, 
after dipping during the attack phase.  This seems to demonstrate again that the form 
of cyber noise generated by network-intensive user activity is relatively high when 
compared to other phases of the experiment, and it is unaffected by the aftereffects of 
the Sobig e-mail virus. 

• On the victim machine, across all three experiments (only attack activity, attack and 
text editing user activity, attack and FTP user activity), the number of non-zero, non-
invaried variables common to both local and remote data collection methods is 
highest during the attack phase.  This also holds true on both the attacker and mail 
server machines in the experiment with only attack activity.  This is an important 
characteristic of cyber signal for this worm: attack activity consistently increases the 
number of non-zero, non-invaried performance variables for the Sobig e-mail virus. 
In other words, attack activity increases the number of relevant performance 
variables, which are those that are non-zero and non-invaried, both with and without 
normal activity, and on all machines involved in the attack (i.e., all except the 
bystander). 

As mentioned previously, for the virus/worm attacks we utilize ASU’s experimental 
process and analysis code for discovering characteristics of cyber signal and noise. Symantec 
applied a subset of the analyses to performance variable data from all four machines in our Sobig 
experiments. We provide an overview of experimental process and analysis code, and how they 
map to the Sobig attack and our laboratory environment, for more details please refer to the ASU 
technical reports. 

The next subsection describes the experimental process Symantec utilized for discovering 
characteristics of cyber signal and noise.  Following that, we present the results from 
experimentation with (only) attack data, and then from experimentation with both attack and 
normal data. 
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7.2.1 Experimental Process 
 

For each of the observable points (machines), analysis code from ASU’s cyber signal 
detection approach was run against the data to discover characteristics of cyber signal and noise. 

The performance variable monitor on Microsoft Windows machines collects detailed, 
low-level information regarding the performance of hardware and operating system components 
(called objects within the performance monitor).  The performance variable monitor can be 
accessed on Windows XP through the Start Menu: Programs → Administrative Tools → 
Performance.  Example performance objects include the processor, memory, hard disk, network 
interface, process scheduler, and threads, and for each object there are many variables.  On a 
typical machine, there can be between 3,500 and 4,000 variables spread across approximately 30 
objects.  For a machine configured as a mail server, there are approximately 5,000 performance 
variables. 

One important component of the experimental process is that each experiment was run 
twice, using a different method of collection for the performance variables.  The first method of 
collecting the performance variables occurred on each experimental machine itself.  This method 
is called local data collection.  The second method of collecting the performance variables 
occurred on a remote machine by transmitting them over the network.  This method is called 
remote data collection.  Using these two methods enabled us to factor out some of the effects of 
the data collection process on the experiment, as the sheer volume of data collection undoubtedly 
has an impact on the observed machine.  We present the results of both the local and remote data 
collection experiments in each subsection below. 

The first set of analyses screens for variables with all zeroes and variables with all of the 
same values.  Screening those variables out leaves remaining only the non-zero, non-invaried 
variables – those variables that could be statistically significant for the experiment.  After the 
non-zero, non-invaried variables are determined for each machine during each phase of the 
experiment, we calculate the common significant variables between the local and remote phases.  
This helps to remove some of the effect of the data collection method: any variable that is 
statistically significant only in one of the two data collection methods – local or remote – is 
likely demonstrating some artifact of the data collection.  We present the results of this first set 
of analyses because there are a great number of variables that are screened out in this first stage, 
and that number varies greatly by observable point (machine) and by phase of the experiment. 

The second analysis provided by ASU is Pearson correlation.  Pearson correlation is a 
measure of correlation between two variables.  In the tables presenting our experimental results, 
the total number of pairwise comparisons (called Total Cells) is a function of the number of non-
zero, non-invaried variables – each variable is compared against every other one.  We utilize 
only the common non-zero, non-invaried variables between the local and remote data collection 
methods for each machine during each phase of the experiment when calculating the Pearson 
correlation.  We then present the results for the number and percentage of correlated variables 
(for both data collection methods). 
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7.2.2 Experimentation with Attack Data 
 
For experimentation with only attack data, ASU divided each experiment into three 

phases: pre-attack (10 minutes), attack (approximately 3 minutes for Sobig), and post-attack (10 
minutes).  The pre-attack phase was a period of inactivity to establish a baseline of performance 
variable data for the experiment.  The attack phase encompassed the amount of time from when 
the attack was launched to when it was completed and/or terminated.  In the case of Sobig, this 
phase starts when the virus is run on the attacker machine; the infected attacker machine then 
sends e-mail to the victim machine, where it is received, opened, and executed; the attack phase 
is terminated by killing the virus process on both the attacker and victim machines.  The post-
attack phase collects data on any aftereffects of the attack, with no activity taking place. 

Table 74 presents the number of non-zero, non-invaried performance log variables on the 
attacker machine. The measures are derived from performance variables that are installed by 
default on commonly deployed operating systems (i.e., Windows 2000 and XP), as described 
previously in this report. The purpose of this investigation was exploration of possible solution 
strategies. 

 

Table 74. Non-zero, non-invaried performance log variables on the attacker machine 

Phase Local Remote Common 
Pre-attack 849 693 576 
Attack 850 801 683 
Post-attack 899 802 660 

 
Table 75 presents the number of non-zero, non-invaried performance log variables on the 

bystander machine. 
 

Table 75. Non-zero, non-invaried performance log variables on the bystander machine 

Phase Local Remote Common 
Pre-attack 911 674 617 
Attack 599 624 464 
Post-attack 733 675 582 

 
Table 76 presents the number of non-zero, non-invaried performance log variables on the 

mail server machine. 
 

Table 76. Non-zero, non-invaried performance log variables on the mail server machine 

Phase Local Remote Common 
Pre-attack 1031 963 807 
Attack 988 1004 876 
Post-attack 916 858 748 
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Table 77 presents the number of non-zero, non-invaried performance log variables on the 
victim machine. 

 

Table 77. Non-zero, non-invaried performance log variables on the victim machine 

Phase Local Remote Common 
Pre-attack 827 554 404 
Attack 710 722 574 
Post-attack 665 529 407 

 
The non-zero, non-invaried screening results above show a substantial reduction in the 

number of significant performance variables at all four observable points (machines) during all 
phases of the experiment.  (Recall that 3500 to 5000 performance variables are collected for each 
experiment.)  In general, the number of significant variables is higher during local data collection 
than remote data collection for each machine during the pre-attack and post-attack phases, while 
the opposite is true for the attack phase.  Furthermore, the number of common significant 
variables is highest in the attack phase for all but the bystander machine.  (It is interesting that 
the bystander machine – which should be relatively unaffected by the attack activity – shows 
wide variations between phases: especially the large drop in significant variables during the 
attack phase in local data collection mode.) 

Table 78 presents a summary of the results from the Pearson correlation analyses on the 
attacker machine. 

 

Table 78. Summary results from the Pearson correlation analyses on the attacker machine 

Phase Total 
Cells 

Significant 
Correlations 

Correlation 
Percentage 

Pre-attack (local) 165025 103433 62.68% 
Pre-attack (remote) 165025 105353 63.84% 
Attack (local) 232221 118963 51.23% 
Attack (remote) 232221 132628 57.11% 
Post-attack (local) 216811 115598 53.32% 
Post-attack (remote) 216811 131359 60.59% 

 
Table 79 presents a summary of the results from the Pearson correlation analyses on the 

bystander machine. 
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Table 79. Summary results from the Pearson correlation analyses on the bystander 
machine 

Phase Total 
Cells 

Significant 
Correlations 

Correlation 
Percentage 

Pre-attack (local) 189420 122899 64.88% 
Pre-attack (remote) 189420 117483 62.02% 
Attack (local) 106953 52839 49.40% 
Attack (remote) 106953 61919 57.89% 
Post-attack (local) 168490 88053 52.26% 
Post-attack (remote) 168490 80718 47.91% 

 
Table 80 presents a summary of the results from the Pearson correlation analyses on the 

mail server machine. 
 

Table 80. Summary results from the Pearson correlation analyses on the mail server 
machine 

Phase Total 
Cells 

Significant 
Correlations 

Correlation 
Percentage 

Pre-attack (local) 324415 202256 62.34% 
Pre-attack (remote) 324415 178985 55.17% 
Attack (local) 382375 175916 46.01% 
Attack (remote) 382375 186074 48.66% 
Post-attack (local) 278631 131642 47.25% 
Post-attack (remote) 278631 144224 51.76% 

 
Table 81 presents a summary of the results from the Pearson correlation analyses on the 

victim machine. 
 

Table 81. Summary results from the Pearson correlation analyses on the victim machine 

Phase Total 
Cells 

Significant 
Correlations 

Correlation 
Percentage 

Pre-attack (local) 81003 44479 54.91% 
Pre-attack (remote) 81003 44850 55.37% 
Attack (local) 163878 77639 47.38% 
Attack (remote) 163878 80242 48.96% 
Post-attack (local) 82215 32640 39.70% 
Post-attack (remote) 82215 37949 46.16% 

 
Figure 53 depicts the correlation percentages across all four machines for both local and 

remote data collection modes. 



 

 144

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

pre-attack  attack  post-attack

Attacker (local)
Attacker (remote)
Bystander (local)
Bystander (remote)
Mailserver (local)
Mailserver (remote)
Victim (local)
Victim (remote)

 
Figure 53. Correlation percentages across four machines 

 
In the Pearson correlation results above, with very few exceptions, the difference in 

correlation percentage between the local and remote data collection methods is within a few 
percentage points.  This is at most an eight percent differential (bystander machine, attack 
phase).  Given the relative proximity in correlation percentages between the two data collection 
modes, we will speak generally about each phase of the experiment independent of data 
collection mode. 

The Pearson correlation results above demonstrate the following characteristics of cyber 
signal: 

• On all four machines, the percentage of pairwise correlated variables decreases from 
the pre-attack to the attack phase as attack-related activity occurs.  Again, this is most 
surprising on the bystander machine, which should be relatively unaffected by the 
attack activity.  Nevertheless, this indicates that cyber signal creates a drop in 
pairwise correlation among performance variables for the Sobig e-mail virus 
experiment.  The average drop across all four machines is 9.32%.  For this reason, 
given the differences between local and remote data collection mentioned above, the 
next subsection “Experimentation with Attack and Normal Data” focuses on variables 
common to both local and remote methods as non-zero and non-invaried. 

• Going from the attack to the post-attack phase, on the attacker and mail server 
machines there is a slight increase (average 2.48% rise) in pairwise correlation 
percentage.  On the victim machine there is a slight decrease (average 5.24% drop).  
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The attacker and mail server machines will have more attack activity than the 
bystander and victim machines again indicating that stronger cyber signal has an 
effect on the percentage of pairwise correlation among performance variables in the 
case of the Sobig e-mail virus.  As mentioned previously, given the differences 
between local and remote data collection mentioned above, the next subsection 
“Experimentation with Attack and Normal Data” focuses on variables common to 
both local and remote methods as non-zero and non-invaried. 

The Pearson correlation results demonstrate the following characteristics of cyber noise: 
• There is a baseline of pairwise correlation between variables, even when there is no 

user or attack activity, as demonstrated by the pre-attack phase on each machine.  The 
non-zero, non-invaried performance variables are likely caused by operating system 
and services’ process activity.  The pairwise correlation amongst the performance 
variables is likely because some or all the variables for each performance object are 
pairwise correlated independent of the activity on the machine.  This baseline activity 
and correlation is a form of cyber noise with respect to the performance variable 
observable point. 

 
7.2.3 Experimentation with Attack and Normal Data 

 
For experimentation with both attack and normal data, ASU divided each experiment into 

five phases: pre-attack (10 minutes), pre-attack with user activity (10 minutes), attack 
(approximately 3 minutes for Sobig), post-attack with user activity (10 minutes), and post-attack 
(10 minutes).  The pre-attack phase and post-attack phases were the same as in the experiments 
with only attack data: no activities were taking place on the machines at the beginning and end of 
the experiment, respectively.  During the pre-attack with user activity phase, some form of 
normal data was generated via user activity, prior to the attack phase.  The attack phase was 
performed in the same manner as in the experiments with only attack data, except that the user 
activity was continued throughout the attack phase in these experiments.  Finally, in the post-
attack with user activity phase, the attack was terminated but user activities continued. 

Symantec completed experiments with two different types of user activity, which 
correspond to two of the user activity experiments that ASU performed: 

• Text editing: a user types text, with figures and tables, into a Word document, saving 
periodically.  The same text that ASU used in their experimentation is used in our 
experiments.  This experiment represents a primarily host-based activity. 

• FTP downloading: a user downloads files from an FTP server continuously.  ASU 
utilized e-book files for downloading; the files on our FTP server were a variety of 
text and binary files of varying sizes.  This experiment represents a primarily 
network-based activity. 

Similar to ASU in their experimentation, user activity is only conducted on a single 
machine – the victim – for our Sobig experiments.  For this reason, only data from the victim 
machine is analyzed for characteristics of cyber signal and noise in the following subsections. 
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7.2.3.1 User Activity: Text Editing 

 
Table 82 presents the number of non-zero, non-invaried performance log variables on the 

victim machine. 
 

Table 82. Non-zero, non-invaried performance log variables on the victim machine 

Phase Local Remote Common 
Pre-attack 715 635 356 
Pre-attack w/ user activity  818 696 489 
Attack 867 738 529 
Post-attack w/ user activity 725 636 416 
Post-attack 804 564 409 

 
As in the experiments with only attack data, the number of non-zero, non-invaried 

variables during each phase of the experiment on the victim machine is higher during local data 
collection than remote data collection.  The number of non-zero, non-invaried variables rises 
from the pre-attack phase to the pre-attack with user activity and again to the attack phase, then 
falls in the post-attack with user activity phase and falls again in the post-attack phase.  This 
indicates that as more activity occurs on the victim machine – whether that activity is normal 
usage or attack activity – the number of significant performance variables increases.  This 
corresponds roughly to the pattern in the experiment with only attack data (with only three 
phases of the experiment though). 

Table 83 presents a summary of the results from the Pearson correlation analyses on the 
victim machine for the text editing experiment. 
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Table 83. Pearson correlation analyses on the victim machine for the text editing 

Phase Total 
Cells 

Significant 
Correlations

Correlation 
Percentage 

Pre-attack (local) 62835 30061 47.84% 
Pre-attack (remote) 62835 29469 46.90% 
Pre-attack w/ user activity (local) 118828 47720 40.16% 
Pre-attack w/ user activity (remote) 118828 50787 42.74% 
Attack (local) 139128 59458 42.74% 
Attack (remote) 139128 57265 41.16% 
Post-attack w/ user activity (local) 85905 29422 34.25% 
Post-attack w/ user activity (remote) 85905 38369 44.66% 
Post-attack (local) 83028 32936 39.67% 
Post-attack (remote) 83028 29533 35.57% 
 
Figure 54 depicts the correlation percentage for both local and remote data collection 

modes. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

pre-attack  pre-attack
with user

activity

 attack  post-attack
with user

activity

 post-attack

Victim (local)

Victim (remote)

 

Figure 54. Correlation percentage for both local and remote data collection modes 

 



 

 148

After screening only the common significant variables and then calculating the Pearson 
correlation percentages, the difference between local and remote data collection is within a few 
percentage points (with the exception of the post-attack with user activity phase). 

One other interesting and potentially useful view of the data is to study the changes in 
correlation percentages when the same performance variables are examined across all phases of 
the experiment.  In order to study this scenario, we screened the data from all phases of the 
experiment in both local and remote data collection modes for only the variables that were 
always non-zero and non-invaried.  For the text editing experiment on the victim machine, this 
was 252 variables, yielding 31,375 correlation pairs. The Figure 55 below depicts the correlation 
percentages in both local and remote data collection modes using only the common non-zero, 
non-invaried variables. 
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Figure 55. Correlation percentages using only common non-zero, non-invaried variables 
 
Our observations regarding the characteristics of cyber signal and noise will be presented 

after the next subsection, independent of the differences in local and remote data collection 
results. 
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7.2.3.2 User Activity: FTP Downloading 
 
The Table 84 below presents the number of non-zero, non-invaried performance log 

variables on the victim machine. 
 

Table 84. Non-zero, non-invaried performance log variables on the victim machine 

Phase Local Remote Common 
Pre-attack 695 808 395 
Pre-attack w/ user activity  694 992 507 
Attack 708 944 557 
Post-attack w/ user activity 706 893 506 
Post-attack 434 702 316 

 
In this experiment, the number of non-zero, non-invaried variables during each phase of 

the experiment on the victim machine is higher during remote data collection than local data 
collection – this is in contrast to previous experiments.  This could be a result of the highly 
network-intensive user activity.  As in the text editing experiment, the number of non-zero, non-
invaried variables rises from the pre-attack phase to the pre-attack with user activity and again to 
the attack phase, then falls in the post-attack with user activity phase and falls again in the post-
attack phase.  This pattern of common variables across experiment phases is a consistent 
observation across all experiments on the victim machine. 

The Table 85 below presents a summary of the results from the Pearson correlation 
analyses on the victim machine for the FTP downloading experiment. 

 

Table 85. Pearson correlation analyses on the victim machine for FTP downloading 

Phase Total 
Cells 

Significant 
Correlations

Correlation 
Percentage 

Pre-attack (local) 77421 32136 41.51% 
Pre-attack (remote) 77421 34407 44.44% 
Pre-attack w/ user activity (local) 127765 58907 46.11% 
Pre-attack w/ user activity (remote) 127765 61481 48.12% 
Attack (local) 154290 54743 35.48% 
Attack (remote) 154290 59629 38.65% 
Post-attack w/ user activity (local) 127260 57904 45.50% 
Post-attack w/ user activity (remote) 127260 60767 47.75% 
Post-attack (local) 49455 13562 27.42% 
Post-attack (remote) 49455 20200 40.85% 
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Figure 56 depicts the correlation percentage for both local and remote data collection 
modes. 
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Figure 56. Correlation percentage for both local and remote data collection modes 
 
Again, after screening only the common significant variables and then calculating the 

Pearson correlation percentages, the difference between local and remote data collection is 
within a few percentage points (with the exception of the post-attack phase this time). 

For the FTP experiment, we also studied the changes in correlation percentages when the 
same performance variables are examined across all phases of the experiment.  As we did for the 
text editing experiment, we screened the data from all phases of the experiment in both local and 
remote data collection modes for only the variables that were always non-zero and non-invaried.  
For the FTP experiment on the victim machine, this was 226 variables, yielding 25,200 
correlation pairs. Figure 57 depicts the correlation percentages in both local and remote data 
collection modes using only the common non-zero, non-invaried variables. 
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Figure 57. Correlation percentages using only the common non-zero, non-invaried 
variables 

 
Our observations regarding the characteristics of cyber signal and noise will be presented 

in the next subsection, independent of the differences in local and remote data collection results. 
 

7.2.3.3 Characteristics of Cyber Signal and Noise from Experimentation with Attack and Normal 
Data 

 
The Pearson correlation results on a victim machine with normal and attack activity 

demonstrate the following characteristics of cyber signal: 
• The percentage of pairwise correlated variables is lowest during the attack phase 

(with user activity continuing concurrently) in the FTP experiment.  In the text editing 
experiment, the attack phase has a lower correlation percentage than in the pre-attack 
phase.  These results are similar to the results on the victim machine in the 
experiment with only attack data.  The characteristic of cyber signal that is confirmed 
is that attack activity lowers the percentage of correlated performance variables in the 
case of the Sobig e-mail virus, for variables that are non-zero and non-invaried within 
any given phase.  However, if we are to use a set of variables to detect phase 
transitions, then the results depicted graphically on page 151 must be taken into 
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consideration.  Once these results are taken into consideration, then the most 
important characteristic of cyber signal that is confirmed is that the attack phase 
increases the number of non-zero, non-invaried variables. 

• In the text editing experiment, the post-attack phase has the smallest correlation 
percentage of any of the five phases. For the FTP experiment, it has the least number 
of significant correlations. 

• In the FTP experiment, when we examine only the common non-zero, non-invaried 
variables across all phases for pairwise correlation, the correlation percentage results 
mirror the results of using different variables for each phase. The correlation 
percentages were calculated with comparisons between two sets of variables: (1) all 
of the non-zero, non-invaried variables in each given phase – even though the set of 
non-zero, non-invaried variables differed between phases – and (2) only the common 
non-zero, non-invaried variables that had non-zero, non-invaried behavior in every 
phase.  In the experiment with FTP user activity, these correlation percentages for the 
two sets of variables roughly corresponded to each other.  This is useful because in 
practice one will not know which “phase” of an attack is currently occurring, 
therefore the results using only the common non-zero non-invaried variables for 
comparison are potentially useful. This is an encouraging result, in that correlation 
percentage could be a meaningful indicator of attack phase for the Sobig attack with 
FTP user activity. To find indications of virus/worm activity with no a priori 
signature for this virus is an encouraging result, even if experimentation begins in 
simplistic contexts. However, results for the text editing experiment were different. 

The Pearson correlation results on a victim machine with normal and attack activity 
demonstrate the following characteristics of cyber noise: 

• As in the experiments with no user activity, there is a baseline of pairwise correlation 
between variables, even when there is no user or attack activity, as demonstrated by 
the pre-attack phase on each machine.  This is a form of cyber noise with respect to 
the performance variable observable point. 

• With the start of user activity, in the text editing experiment there is a decrease in the 
correlation percentage from the pre-attack stage.  In the FTP experiment though, there 
is a slight increase in correlation percentage when user activity starts.  This is likely 
caused by the difference in activity type and its effect on performance variables – 
highly network-intensive user activity appears to be more correlated. 

• The post-attack with user activity phase in the FTP experiment exhibits a similar 
correlation percentage to the pre-attack with user activity phase, after dipping during 
the attack phase.  This seems to demonstrate again that the form of cyber noise 
generated by network-intensive user activity is relatively high when compared to 
other phases of the experiment, and the cyber noise is unaffected by the after effects 
of the Sobig e-mail virus. 

• The post-attack with user activity phase in the text editing experiment has the biggest 
difference in correlation percentage between the local and remote data collection 
modes, but when averaged it is slightly lower than the correlation percentage from the 
pre-attack with user activity phase.  Both phases have a lower correlation percentage 
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than the pre-attack phase (with no user or attack activity), indicating that the cyber 
noise generated by text-editing user activity seems to lower the percentage of 
correlated performance variables. 

 
7.3 Task 3 – Investigate, develop and test sensor models of signal detection, and 
a sensor fusion model for each observable point. 

 
Symantec investigated, developed, and tested sensor models and a sensor fusion model 

for the database domain using the query time series.  The query time series is observable at the 
database, at the client machine, and on the network in between.  In this manner, the query time 
series is consistent in our experiments at each observable point, and the sensor and sensor fusion 
models for any one of these observable points then are sensor and sensor fusion models for each 
of the other observable points in our experiment. 

The sensor models are stochastic models created by processing the query time series, 
either adaptively in real-time or during a training period, characterizing the behavior of either 
one user or a group of users during a client session.  A sequence of queries is modeled as a 
sequence of “states”; the behavioral model is then a “finite state model” utilizing n-grams. 

The sensor fusion models utilize Bayesian networks, in which a probability of attack is 
calculated from sensor data and prior probabilities. 

Testing of the sensors and sensor fusion models occurred via experimentation with 
database simulations covering a wide range of representative normal usage and attacks.  In total, 
eleven usage and attack scenarios were tested to evaluate the feasibility and correctness of the 
approach. 

The first subsection presents the sensor model developed for the database investigation.  
The second subsection describes the sensor fusion models investigated and developed.  The third 
subsection presents the testing conducted using simulated database scenarios. 

 
7.3.1 Sensor Model 

 
The key observable point in the database investigation is the processing component of a 

database for the query time series.  The query time series is the sequence of database queries 
submitted for processing.  Because the data collected in the database’s query time series is 
textual (raw SQL query text), it must undergo significant transformations to enable attack 
detection. 

The approach taken in the database investigation was to factor this transformation into 
several steps, including development of both sensors and a sensor fusion model.  The first of 
these steps is the derivation of both categorical and arithmetic variables from the query time 
series text and other information.  This derivation is done by processing components that “sense” 
certain features of the data; in accordance with the signal detection approach, these processing 
components are called “sensors”.  The choice of sensors is driven by hypotheses developed by 
investigating and simulating attack scenarios. 

The sensors are, in effect, mathematical functions.  These functions range from simple 
functions of single queries to history-dependent functions of the query time series and related 
query information (such as user name, session ID, IP address, time, etc.). 
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Relatively simple computations include: 
• Query text, with literals, table references, and column references replaced by 

variables 
• Query complexity according to several measures 
• Count of number of certain constructs (SELECT, WHERE, JOIN, *, etc.) in query 
• Tables/columns referenced by queries 
• Sets of bindings for variables, or literals, included in queries 
• Measure of aggregation of query content from query to query and measure of breadth 

of content exploration, observed in sequential dependencies between queries (for a 
given user or session) 

• Inclusion of certain relational operators in queries 
• Membership in equivalence classes created by clustering sets of tables, columns, or 

literal values 
• Metrics of breadth of tables and columns accessed and breadth of query constructs 

employed 
More sophisticated computations involve history dependencies.  In effect, these 

computations compute the deviation of query sequences from empirically established norms – 
deviations with respect to specific characteristics such as those above.  The established norms are 
represented by stochastic models that may be created adaptively in real-time or during a training 
period. 

A discussion of the differences between this investigation and traditional anomaly 
detection is provided at the end of this section – in particular, our detection approach takes into 
account both specific attack scenarios as well as deviations from normal behavior, and additional 
information that supports an attack hypothesis is required and utilized to detect insider attacks. 
Existing anomaly detection was an appropriate starting point for signal/noise separation analysis 
in the case of insider attacks against databases, because insider attacks cannot typically be 
classified a priori as malicious, requiring the integration of adaptive methods to learn legitimate 
behavior (noise) with attack-specific hypotheses characterizing malicious behavior (signal). 

These models characterize the behavior of either one user or a group of users during a 
client session.  A sequence of queries is modeled as a sequence of “states” (equivalence classes 
of queries).  These states are equivalence classes of queries where the equivalence classes are 
created from the query text by replacing literals, table references, and column references with 
variables.  The behavioral model is then a “finite state model” – specifically, an n-gram model 
capturing: 

• Probabilities of transitions between states, given the n-1 most recent states 
• delays (in time), and variances of delays, between queries (i.e., given a prior sequence 

of states, the FSM yields the expected value for the delay until the next query, as well 
as the variance of that delay) 

• proportion of visits to each state (separate from transition information) 
• relationships between IP and user, as well as IP and query categorization 
Other history-dependent quantities are computed separately, such as: 
• the length of sessions, measured in time or as a number of queries 
• the number of concurrent sessions for a given DB user 
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With each of these computed as implied above, deviation from historical norms is easily 
detected for many of them. These signal detection models are similar to those utilized in standard 
anomaly detection, however: 

• The deviations are computed for very specific quantities that have been chosen by 
considering specific attack scenarios, not just normal behavior. 

• The computed result is not only a metric of the magnitude of the deviation, but may 
include other “directional” information; for example, if a sequence of queries occurs 
at an unusual rate, or with unusual regularity, the directionality of the difference (for 
both rate and regularity) is recorded – only certain types of changes (e.g., 
corresponding to a transition from human analysis to automated data collection) 
correspond to attacks. 

• The computed deviation is typically not sufficient, independently, to identify an 
insider attack.  Additional information that specifically supports an attack hypothesis 
(captured by other variables) is typically required. 

Testing of these sensor models is described later in this section. 
 
7.3.2 Sensor Fusion Model 

 
Experimentation with the various transformations above, as well as the study of attack 

scenarios, strongly suggested that fusion of information was critical to creating reliable 
indications and warnings. 

Symantec first investigated several methods of sensor fusion, including the following: 
• Naïve Bayesian Inference: A collection of variables are modeled with large joint 

probability distribution.  The advantages of this fusion model are that it is well 
grounded and conceptually simple.  However, it is very difficult to compute and 
manipulate for a variety of reasons (for example, conditional independence is not 
assumed). 

• Bayesian Networks [36]: Specific assumptions of conditional independence are 
made, leading to a directed graph with nodes representing random variables and 
edges representing conditional probabilities.  Bayesian networks are also well 
grounded and conceptually simple, and there are optimized implementations 
available.  The requisite assumptions of conditional independence are a disadvantage. 

• Dempster-Shafer Evidence Theory [37,38]: In some formulations, this is a 
generalization of Bayesian formalism to handle uncertainty, typically rule-based or 
using something like random variables.  This method does not necessarily require 
conditional independence.  Unfortunately, in practice it is conceptually difficult, 
computationally cumbersome, and difficult to apply correctly. 

• Certainty Factors [39]: This is a rule-based formalism, where individual rules have 
associated uncertainty.  This fusion model is simple to understand and implement, but 
again it requires a conditional independence that is difficult to achieve.  In addition, 
the decision theory is ad hoc. 
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• Weighted Average / Voting / Neuron: A weighted average of variables is computed 
and compared against a threshold.  This model is also simple to understand and 
implement, but it is not well grounded and loses information about probabilities. 

 
Of these approaches, the Bayesian network fusion model was chosen and implemented. 

After weighing the advantages and disadvantages of each method, Bayesian networks was 
determined to be the most amenable to the sensor fusion of database query time series sensor 
values. Our approach utilizes a Bayesian network model and then infers a probability of attack 
from various evidence and prior probabilities. Both the inferred variable (in this case probability 
of attack) and the choice of evidence are configurable. Figure 58 shows an example Bayesian 
network fusion model derived from experimentation with the scenarios described later in this 
section. 

 
Figure 58. An example Bayesian network fusion model 
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Testing of this sensor fusion model is described in the next subsection. 
 

7.3.3 Testing of Sensor and Sensor Fusion Models 
 
Testing of both the sensor and sensor fusion models was conducted via experimentation 

with simulated database scenarios, involving both normal user activity and attack activity.  
Symantec devised eleven database scenarios across three representative database styles for 
testing purposes.  Testing was conducted primarily to evaluate the feasibility of the approach and 
the correctness of the implemented sensor and sensor fusion models.  An overview of the 
experimentation conducted for testing will be provided in this subsection. 

The database scenarios are classified by the database style that they explore.  Modern 
database management systems have numerous features, only some of which may be relevant to a 
given database installation.  Often the particular features used, and the way they are used, fits a 
well-known pattern or “database style”.  The database scenarios investigated for testing 
considers three database styles: 

• Online transaction processing (OLTP) 
• Data warehouse 
• General purpose (e.g., Web-Note: Some of the scenarios investigated may be 

more relevant to the IC environment than others; for example, we believe that 
the data warehouse scenarios would have more relevance than the OLTP 
scenarios.) 

Online transaction processing databases are typically utilized for commerce, inventory, 
supply chain management, etc.  Queries are often issued via stored procedures and are highly 
stereotyped.  Individual queries typically involve small data sets and the rate of queries is very 
high.  Transactions often involve both reading and writing. 

Data warehouse databases are typically utilized for decision support, marketing research, 
analysis, etc.  The data is often “not-quite-real-time”, but there can be very large data 
dictionaries, with many relations.  Usage of the database involves variable query patterns, 
including possibly ad hoc queries.  Data processed in individual queries may be large. 

General-purpose databases are utilized for Web servers and e-commerce.  There are 
multiple classes of users, some sharing a single user identity and others with higher privileges 
(e.g., to perform administrative operations).  The database may sit behind an application server 
or web server and may support a heterogeneous set of applications.  In practice, the features 
include a mixture from both OLTP and data warehouse databases. 

Scenarios are presented by database style.  Each database style has its own “story” that 
provides a means of discussing scenarios.  The story is included for pedagogical and 
motivational reasons, but it is the implementation that determines the breadth of applicability of 
the scenario.  For each database style, an introduction to that style is provided, followed by a 
listing of the individual scenarios for that database style. 
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7.3.3.1 OLTP Scenarios 
 
The OLTP scenarios are described with respect to a database of simulated credit card 

information, including tables of basic account information, payment history, transaction history 
for a set of cardholders, and case histories of customer service.  The simulated database user is a 
customer service representative (CSR) operating in a highly constrained mode. 

Under normal circumstances, the user has no privileges on the data itself, only privileges 
to execute a particular set of stored procedures, each representing a transaction for part of his/her 
job function.  The stored procedures carry the privileges on the data, and the user’s normal 
functions are carried out through forms-based applications that call the stored procedures.  The 
sensitive data is the basic account information, which includes the cardholder’s authentication 
data as well as the credit card numbers.  Attacks are aimed at theft of sensitive data, using the 
stored procedures available to the user. 

Normal activity is organized around customer calls handled by CSRs.  Handling a 
customer call entails performing a sequence of transactions from an allowed set, all carrying the 
same card number.  The malicious CSR interleaves either reconnaissance or data collection 
activities with his/her normal activities. 

The OLTP scenarios are: 
OLTP1: CSR retrieves credit card information (manually) without a corresponding 

customer call 
OLTP2: Upon a customer call, the CSR deviates from usual script to retrieve 

private information about another customer 
OLTP3: CSR performs manual reconnaissance 
OLTP4: CSR performs automated data collection 
 

7.3.3.2 Data Warehouse Scenarios 
 
The important characteristics of the data warehouse scenarios are: 
• the universe of queries is not bounded in normal use 
• a single analyst may produce new queries with different structure, accessing different 

tables, joining them different ways, every day 
• a single analyst may execute queries repetitively or only once 
• in general, established anomaly detection techniques are less applicable to attack 

scenarios for this database style 
Unlike the OLTP case, where queries and query sequences are highly stereotyped, in the 

case of the data warehouse, for almost any behavior, there is some database installation for 
which that behavior is legitimate.  It is much more difficult to attach significance, a priori, to 
individual behaviors.  In this case, more sophisticated classification schemes must be employed 
and deviations from normal behavior can be expected to be more subtle. The opportunity arises 
because, for a given installation or user, only some behaviors will typically be “normal”, and the 
scenarios seem to suggest that certain kinds of deviations from that “normal” will be particularly 
suggestive of an attack or its precursors. 
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Two kinds of data warehouse installations are considered: 
• A commercial data warehouse used for decision support and marketing analysis.  The 

simulated user is a marketing analyst with broad query privileges.  
• A highly secure data warehouse at an intelligence agency, used for analysis of 

intelligence data.  The simulated user is an intelligence analyst with broad query 
privileges, limited by need-to-know restrictions to particular subject areas. 

The specific scenarios are believed to apply, to some extent, to both kinds of data 
warehouses.  Scenarios have been constructed with different levels of access to reflect possible 
differences in the amount of data available to a single user. 

In each case, the malicious user is a highly trusted employee, with privileges sufficient 
for the user to follow his/her instincts in making new connections between seemingly unrelated 
data items.  Users are able to issue ad-hoc complex queries. 

Normal analyst activity, in both the marketing and intelligence data warehouse 
installations, includes a mixture of repetitive and exploratory query sequences.  The more 
difficult problem involves the exploratory sequences.  These may illustrate several typical 
characteristics: 

• complex queries may be built up in stages, as the user examines the intermediate 
results and finds ways to filter and refine them by joining them with information in 
other tables—the connections the user is trying to establish or refute may involve 
multiple tables among which there are semantic relationships (usually via foreign 
keys) 

• graphs of relationships might be traced out by self joins on certain tables (e.g. on a 
table of telephone call records, when A calls B and B has at some point called C, 
there is a possible connection between A and C) — some sets of queries might be 
issued several times with different parameters for what-if analyses — a higher 
frequency of erroneous queries (than found in non-analyst activities) 

The analysts have privileges to access database tables directly.  They are more likely 
(relative to the other classes of scenarios) to examine the database structure to formulate ad-hoc 
queries linking several tables; thus, metadata queries have a significantly lower chance of 
signaling the onset of an attack. There is a wider range of activities between highly focused 
retrievals and systematic extraction of larger volumes of data. 

The data warehouse scenarios are: 
DW1:  Attacker performs reconnaissance, manually exploring breadth of data 
DW2:  Collecting data, attacker does not form query by accreting terms in query 
DW3:  Attack involves transition from exploratory to repetitive data collection 
DW4:  Attack involves topic outside historical norm for user 
DW5:  Attack performed at time outside historical norm for user 
 

7.3.3.3 General Purpose Scenarios 
 
The general-purpose database (as might be found behind a Web server, portal, or 

application server) supports some transaction processing as well as some analysis functions (for 
users as well as administrators). 
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Because of the complex functionality of Web servers, they often have significant 
configuration vulnerabilities.  When they are penetrated, the attacker often gains the same rights 
to the database as the Web server itself.  Thus, this is one case where misuse detection provides a 
last line of defense against other types of attacks. 

Normal usage comprises the Web-based transactions and some server administration.  
Conceptually, this includes user login/logout, access to public and private areas, searches for and 
display of content, financial transactions, and access of private content by an administrator. 

We examine two attack scenarios.  The first deals with the case where the Web server has 
been taken over.  In this case, the attacker uses the database user ID normally used by the Web 
server and retrieves sensitive data.  The second deals with the well-known but persistent problem 
of SQL injection. 

The general-purpose database scenarios are: 
GP1: Inappropriate use of web server user privileges to access otherwise unavailable 

data 
GP2: SQL injection to get otherwise private data 
 

7.3.3.4 Testing Results and Observations 
 
Each of the eleven scenarios described above was implemented and tested using an 

augmented and instrumented Oracle database infrastructure. In each scenario run, both normal 
user activity and attack activity were simulated, and in each scenario the sensor models and 
sensor fusion models were calculated over the query time series.  In the majority of the scenarios, 
the attack queries were detected after a training period, albeit with varying degrees of false 
positive performance.  For the remaining scenarios, further analysis is required to determine the 
cause of missed detections (e.g., insufficient training, inadequate models, etc.).  These initial 
testing results demonstrated the feasibility of the approach (with simulated data) and 
implementation; further investigation and evaluation is required to fully validate the utility of the 
approach. 

Experimentation with the Bayesian network approach to sensor fusion suggests that it is 
viable; however, many of the conditional probabilities must be adjusted to get a desired 
frequency of alerts and a relative weighting of evidence that reflects the certainty about the 
relevance of the evidence – for some scenarios some evidence is much more useful than others.  
For example, in some attack scenarios, the sensor for whether the data accessed by a query is 
sensitive (called “is-sensitive-data”) is a very important indicator: in that case, for optimum 
effect (to correctly identify the attacks) the correlation between “is-sensitive-data” and the attack 
determination (“is-attack”) can be artificially increased relative to other variables that are 
deemed less relevant.  If not careful, this artificial increase can be exaggerated to a point not 
accurately reflecting risks and sensitivity of aggregation. 
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7.4 Task 4 – Formulate and solve an optimization problem to select an optimized 
suite of I&W observables / cyber sensors. 

 
Symantec formulated and solved an optimization problem to select an optimized suite of 

I&W observables / cyber sensors. 
The optimization problem minimized the “harm” in terms of whether or not to alert an 

administrator of a potential attack.  The I&W observable that comprised the optimized suite was 
the database query time series.  Experimentation with the database scenarios yielded some useful 
cyber sensors for the optimized suite, such as a new state being added to the finite state machine, 
irregularly timed queries, unusually complex queries, and unusual use of columns. 

The first subsection presents the formulation of an optimization problem for I&W in the 
database domain and the solution utilized for this investigation.  The second subsection discusses 
the optimized suite of I&W observables / cyber sensors. 

 
7.4.1 Optimization Problem for I&W of Insider Database Attacks 

 
In formulating the optimization problem for providing I&W of insider database attacks, 

several components of an I&W system were considered.  These include the database and its 
users, human security administrators, and the I&W infrastructure itself. 

 
7.4.1.1 The Database and Its Users 

 
Database queries are associated, by the database, with database users (DB users).  A 

given DB user may issue queries on behalf of more than one human or organization, for 
example, in circumstances where a single DB user account is shared between a web server and 
the database.  For the purposes of our research addressing insider attacks, it is assumed that each 
query can be associated with a single DB user that is responsible for initiating it.  The approach 
presented here does not depend on the specifics of that DB user, but a required property of a DB 
user is that it may be ascribed malicious intent or legitimate intent for each query that it initiates. 

Several pieces of information are almost always observable for each query, including the 
time of the query, 
  =t  time of the query, 
as well as the query content itself (i.e., the SQL statement text), the DB user issuing the query, 
the IP of the host that sent the query to the database, and other information, 
  =q (query SQL, DB user, IP of host, ...). 

Because each query can be identified with a DB user who can in turn be ascribed 
malicious or legitimate intent, queries can be organized into “incidents”.  For the purposes of this 
discussion an incident can be defined: 

• by defining “sub-incident” as a contiguous sequence of queries issued by a single DB 
user with malicious intent; and 

• by defining “incident” as a sub-incident that is not part of any other sub-incident. 
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Thus, given a time series of queries, (q0, t0), ..., (qi, ti), the incidents can be numbered (1, 
2, ...).  Then, a given query, qi, can be associated with a given incident number (or, say, zero if 
the query is not part of an incident), ai. 

In practice, a query (or collection of queries) must meet two tests in order to be 
determined to be part of an incident: 

• the query (or collection of queries) is statistically anomalous, where 
• the specific character of the anomaly is consistent with some prior “hypothesis” about 

how an attack might take place. 
While the domain-specific problem of defining an incident is important for a production 

system – it may, for example, impact how evidence of an attack is aggregated and presented to 
an administrator – the database investigation focused on the question of whether an individual 
query was part of an incident. 

 
7.4.1.2 Human Security Administrators 

 
When an I&W system “detects” an incident, a human security administrator (HSA) will 

typically be notified (perhaps in addition to other things occurring).  In the case of insider 
database attacks, this contributes a significant amount of complexity to the problem of 
developing optimized I&W: the costs and benefits of notifying an administrator are difficult to 
quantify. 

The cost of notifying an administrator will depend on what is expected of him or her.  At 
the very least, some time is consumed validating the detection.  How much time will depend on 
what type of forensic information is provided.  Since many possibilities may contribute to a 
decision to notify the administrator – including mutually exclusive possibilities – there is a great 
deal of variety in the type of information that presumably should be provided.  For example, a 
system might: 

• identify a single query 
• identify a DB user 
• identify an incident 
• identify several queries, DB users, or incidents 
• merely indicate that “something is wrong somewhere” 
Quantifying the cost is further complicated by the fact that the cost of a false positive 

depends on what action the administrator takes (e.g., shutting down the database). 
The benefits of notifying an administrator, aside from potentially preventing or mitigating 

damage from an attack, include the possibility of training the I&W system.  Since the 
administrator has pattern recognition skills and “out-of-band” knowledge about the database 
system and its users, the administrator will generally know things that the I&W system does not.  
By doing a forensic investigation, the administrator can feed back information (e.g., “this was 
not an attack”).  Further, this information may, in principle, be very specialized (e.g., user, John 
Doe, is supposed to be doing this). 

The present research takes a very simple approach, assuming a fixed expected cost per 
notification and some fixed expected loss should an attack occur and not be detected. 
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7.4.1.3 I&W Infrastructure 
 
As noted previously, a defining property of insider attacks is that the behavior that 

constitutes the attack cannot be classified a priori (i.e., before any kind of training) as malicious.  
This is very different from cases where attacks have some clear signature (e.g., network traffic 
increased by orders of magnitude in a DOS attack).  Given a query time series, the perceived 
probability that an attack is underway will tend (in many situations) to be small even when an 
attack is actually under way – i.e., in this situation, the specific choices made in detection and 
analysis methodologies may more frequently impact the results. 

Analysis of the scenarios considered in this research reveals that a significant amount of 
uncertainty is inherent in detection of insider attacks and that a general approach must account 
for such uncertainty. 

Further, while determining whether an attack is underway is a challenge, determining 
what to do about it also creates a challenge.  Per the discussion above, there are many variables 
in notifying a human security administrator.  Further various actions may be automatically taken: 

• block the query (and any transaction it is part of to satisfy integrity constraints) 
• block all queries by the DB user 
• shut down access to a table 
• etc. 
The present research considers a passive system in which an attack, or pending attack, is 

detected and an HSA is notified, but no other action is taken.  Even in this case, notification of an 
HSA has a cost – the cost of the HSA’s attention for a period of time. 

Yet further, initial research on database attack scenarios suggests that different types of 
attacks may lend themselves to qualitatively different detection schemes.  Thus, it is anticipated 
that the I&W system will have multiple “hypothesis-specific” modules to explicitly deal with 
these different schemes.  Information from these different modules must be merged.  This 
necessitated a data fusion approach within the database-specific I&W infrastructure, even before 
integrating with other I&W components. 

Because of the importance of uncertainty in detecting insider attacks, it is useful to 
consider a probabilistic formulation of the I&W problem. 

As noted above, determination of the “maliciousness” of a query can only be made in 
light of historical information (i.e., training, whether it be in a dedicated “training” session or 
through observing a production system).  Such historical information can be captured in 
stochastic model. 

Consider the time series discussed above, 
  (q0, t0, a0), (q1, t1, a1), ...,  (qj, tj, aj) ; tj > ti+1 > ti > t0  
to be an outcome of the stochastic process, 

X = {Xi : i ∈  N} = (Q, T, A) ; Xi = (Qi, Ti, Ai), 
where Xi is a random variable with the sample space, 
  “queries” × “time” × “incident number”. 

The process X represents a model of the “real world”, including information about 
whether various queries were parts of incidents.  Then, of course, a simple determination of 
whether to warn a human security administrator (HSA) might then depend on whether 
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(Pa * h(“notified”, “attack”) + (1–Pa) * h(“notified”, “no attack”)) <  
(Pa * h(“didn’t notify”, “attack”) + (1–Pa) * h(“didn’t notify”, “no attack”)), 

where, 
h(“whether notified”, “whether attack was real”) = “metric of harm”, 

and Pa represents the perceived probability that an incident is an attack, 
Pa = P (Ai > 0  | Q0 = q0, T0 = t0, ..., Qi = qi, Ti = ti). 
Note that metric of “harm”, h, like the process, X, may reflect historical information (e.g., 

h may reflect the fact that it may be more expensive to notify an HSA more frequently than some 
optimal rate). 

In the present research, we used the following model where the harm Hi for each incident 
i could have any of three possible values:  

• h(“didn’t notify”, “no attack”) = 0, 
• h(“notified”, “attack”) = c 

= h(“notified”, “no-attack”) = “cost of notification” (or “cost-per-alert”), and 
• h(“didn’t notify”, “attack”) = l = “prospective loss from attack” (or “prospective-

loss”). 
As described above, we assume a fixed expected cost per notification even if there was 

no attack, a fixed expected loss (assumed to be a greater harm) for attacks without notification, 
and no harm (other than the cost of the alert) for attacks with notifications.  The decision 
function from above  

(Pa * h(“notified”, “attack”) + (1–Pa) * h(“notified”, “no attack”)) <  
(Pa * h(“didn’t notify”, “attack”) + (1–Pa) * h(“didn’t notify”, “no attack”)), 

may then be simplified to read: 
  [Pa * c + ( 1 - Pa )*c] < [ Pa * l ] 
which reduces to: 
  c < Pa* l 
and further reduces to: 
  Pa > c / l 

In other words, the decision logic might be stated, “warn an HSA when the perceived 
probability of an incident being an attack is greater than the cost of a false alarm divided by the 
potential loss of a missed attack.” 

In this optimization problem, the goal is minimization of total harm H as a sum of all 
harms Hi for all incidents in a time series sequence of incidents:   

H = ∑
=

j

i
iH

0
 

However, as noted above, the magnitude of each harm is a function of both ground truth 
of whether or not there was actually an attack in progress, as well as the result of the decision 
function as to whether or not an alert went to an HSA.  For this reason, at this point it is 
necessary to more formally represent ground truth.  We represent ground truth (G) of each 
incident as either actually being an attack (Gi=1) or actually not being an attack (Gi=0).  Given 
this representation of ground truth, and decision logic described above, the four cases of the truth 
table may then be represented as: 
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If Gi = 0 and [(c/l) – Pa ] >= 0 then Hi = 0 
If Gi = 0 and [(c/l) – Pa ]   < 0 then Hi = c 
If Gi = 1 and [(c/l) – Pa ]   < 0 then Hi = c 
If Gi = 1 and [(c/l) – Pa ] >= 0 then Hi = l 
 

This may be represented in closed form as 
 

Hi = [ c * [ POS ( Pa - ( c / l ) ] * ( Pa – (c / l ) ) ] 
     + [l * Gi * POS ( ( c / l ) – Pa ) ] 

where POS (x) is a function such that: 
  POS (x) = 1 for x > 0, 
  POS (x) = 1 for x = 0, and 
  POS (x) = 0 for x < 0. 

Of the first term of the closed-form representation of Hi, the first component, namely 
c * [POS ( Pa - ( c / l ) ], 

captures the two cases where alerts are generated and the harm is equal to the costs of the alerts. 
Of the first term of the closed-form representation of Hi, the second component, namely 

(Pa - ( c / l ), 
captures the boundary case where the perceived probability of an incident being an attack 
precisely equals the cost of an alert divided by the loss of attacks without warning.  In such 
cases, in the decision logic above, an alert is not generated.  In such cases, the harm is entirely a 
function of ground truth Gi. 

The second term of the closed from representation of Hi, namely 
[l * Gi * POS ( ( c / l ) – Pa ) ], 

captures the case where an alert is not generated though an attack is imminent or occurring.  In 
such cases, the harm is the loss from an attack without warning. 

Given then that c and l represent constants, most likely derived from historical or 
projected costs and losses, and given that indications and warnings systems have no control over 
ground truth Gi, indications and warnings systems then only have one means to minimize the 
harm H of a time series sequence of incidents.  That means is the means of adjusting the 
accuracy of Pa in estimating the likelihood of an attack.  The optimization problem then is 
minimizing H by improving accuracy of Pa.  To do this, we must more formally define the 
accuracy of Pa.  To do this, we revisit Hi: 

Hi = [ c * [ POS ( Pa - ( c / l ) ] * ( Pa – (c / l ) ) ] 
     + [l * Gi * POS ( ( c / l ) – Pa ) ] 

We might simplify this by defining a condition w where the HSA is warned of a potential 
attack.  From the truth table we note that 

Hi = [ c * w ] + [l * Gi * not (w) ] 
where not (x) is the boolean function “not.” 

Without loss of precision, this may be rewritten as: 
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Hi = [ c * w * Gi  ] + [ c * w * not ( Gi ) ] + [l *  Gi * not ( w ) ] 
And further re-written as: 

Equation Z: 
Hi = Gi * [ w * c + not ( w ) * l ] + [ not ( Gi ) * w * c ] 

Given the assumption that the average cost c of each alert is less than the average loss l 
of each unwarned attack, 

[ c * w * Gi ] < [l * Gi * not (w) ] 
Therefore, to minimize the first term Equation Z, namely to minimize the quantity Gi * [ 

w * c + not ( w ) * l ], it is necessary to maximize correspondence of w with Gi. 
Examining the second term of Equation Z, we note that minimizing the second term of 

Equation Z, namely minimizing the quantity [ not ( Gi ) * w * c ] requires minimizing 
correspondence of [ not ( Gi ) ] with w. 

In other words, given that Equation Z represents harm, minimizing harm requires 
maximizing correspondence of w with Gi while minimizing correspondence of w with [ not ( Gi ) 
].  “Optimal” minimization of harm then would be cost c for each Gi with no penalties l for Gi 
with no w, and no penalties c for w with no Gi.  For this reason, optimization in minimizing harm 
has a linear relationship with minimizing quantity M where: 

M = [ c * w * not ( Gi ) ] + [l * Gi * not ( w ) ] 
Given that c and l are constants, this is effectively similar to minimizing M’ where: 

M’ = [ ( c / l ) * w * not ( Gi ) ] + [ Gi * not ( w ) ] 
We note from the decision logic that w is a function of Pa: 

w = [ POS ( Pa – ( c / l ) ] * [ Pa – ( c / l ) ] 
 

We recall the definition of Pa as  
 

Pa = P (Ai > 0 | Q0 = q0, T0 = t0, ..., Qi = qi, Ti = ti). 
We then consider Pa as a function of the histories of observables in Q, T, and A.  

Optimizing the indications and warning system then is the challenge of minimizing harm by 
selecting sets of observables in Q, T, and A, and selecting functions for Pa such that Pa = f ( Q, T, 
A ) generates a sequence of warnings wi that minimize M’.  

Given this then, the solution of this optimization problem then lies in selecting the suite 
of observables, sensors, and functions that generate sequences of warnings that minimize M’. 

The I&W observable that comprised the optimized suite was the database query time 
series.  Experimentation with the database scenarios yielded some useful cyber sensors for the 
optimized suite, such as a new state being added to the finite state machine, irregularly timed 
queries, unusually complex queries, and unusual use of columns. 
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7.4.2 Optimized Suite of I&W Observables / Cyber Sensors 
 
Given our formulation of the optimization problem for I&W of insider database attacks, 

data from the sensors described in the previous section could be utilized for determining whether 
or not to alert on detection of a possible attack. 

In order to facilitate testing with the database scenarios mentioned in the previous 
section, Symantec developed a demonstration and evaluation prototype, implementing the 
database sensors observing the database query time series.  The Symantec database prototype is 
configurable with the “cost of notification” and the “prospective loss from attack” values that 
enable solving the optimization problem (again, minimizing the harm in terms of whether or not 
to alert an HSA on a prospective attack).  For each query in the query time series of a given 
simulated scenario, the probability of attack is calculated and the prospective benefit (i.e., 
reduction of harm) of alerting an HSA is calculated to determine whether or not to alert on the 
query. 

For the optimized suite of I&W observables / cyber sensors, each observable value is 
calculated for each query in the query time series – the transformations required on the query 
time series to calculate each observable value in general do not preclude their calculation for 
each query, in each database scenario.  However, some observables / sensors demonstrated more 
utility than others in terms of calculating the probability of attack, depending on the database 
scenario being tested. 

The following sensor types demonstrated utility in calculating the probability of attack 
during experimentation with the database scenarios and attacks: 

1. fsm-is-new-state: a sequence of query types occurs that has not previously been seen 
(OLTP1, OLTP4,  and GP1 scenarios) 

2. delay-regime: slow queries, indicative of reconnaissance activity (OLTP3, DW4, and 
GP1 scenarios) 

3. delay-var-regime: irregularly timed queries, again indicative of reconnaissance 
activity (OLTP3, DW4, and GP1 scenarios) 

4. complexity-regime: unusually complex query, indicative of reconnaissance (OLTP3 
and DW4 scenarios) 

5. coherence-regime: unusual lack of variation in queries (OLTP3 scenario) 
6. column-unlikely: a rarely seen column (OLTP3, DW4, and GP1 scenarios) 
7. column-set-unlikely: a rarely seen set of columns (DW1 and DW4 scenarios) 
Please note that data from these sensors, and possibly others, is fused when making the 

determination of notifying an administrator of a potential attack – thus, no single sensor variable 
alone is necessarily indicative of an attack.  Please also note that optimization was only done for 
the following scenarios: 

• OLTP1 
• OLTP3 
• OLTP4 
• DW1 
• DW4 
• GP1 
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For this set of scenarios, pruning any of the sensors decreased the suite’s ability to 
reliably detect such breadth of attacks.  Moreover, for this set of scenarios, adding additional 
scenarios either introduced additional false-positives, each carrying cost c for each additional 
false positive, or simply did not reduce either false positives or false negatives.  In this regard the 
set of sensors above represents an optimized suite of cyber sensors corresponding to I&W 
observables. 

 
7.5 Task 5 – Test and verify research outcomes using real information 
infrastructure data that is available at Symantec. 

 
Symantec tested and verified research outcomes from ASU using real information 

infrastructure data available at Symantec. 
ASU provided research outcomes via technical reports and presentations. Symantec 

possesses real information infrastructure data, in the form of Sobig e-mail virus samples, which 
could be run in secure laboratory facilities only within Symantec.  These samples consist of code 
and data obtained from real information infrastructure.  Using these samples, Symantec 
generated additional data to enable testing and verification of research outcomes from ASU. 

The research outcomes from ASU took the form of performance variables that were 
determined to be possible indicators of cyber attack via a variety of statistical analyses.  
Symantec was able to test and verify a subset of these research outcomes using the Sobig sample 
and generated data, as outlined below. 

The first category of research outcomes provided by ASU related to probability 
distributions of performance variables. In that section, the common performance object variable 
groups that shift distribution between phases were Memory, Process, Processor, and Terminal 
Services Session.  In Symantec’s testing with data generated from Sobig experimentation, the 
first three of these performance object variable groups – Memory, Process, and Processor – also 
shifted distributions.  Terminal Services Session could not be verified; this difference may be 
caused by differences in performance variables provided by Microsoft for different types of 
systems (e.g., laptops versus desktop machines, Windows 2000 versus Windows XP). 

The second category of research outcomes provided by ASU and verified by Symantec 
related to difference in means (averages) of performance variables. ASU lists 32 example 
performance variables that shift averages among phases for all six of their investigated attacks.  
Of these 32 variables, the 24 variables that related to the Memory, Objects, and Process 
performance objects were also confirmed to shift averages in Symantec’s testing with data 
generated from Sobig experimentation.  The other 8 variables that could not be confirmed all 
related to the Terminal Services Session object. Absence of Terminal Services Session data 
appears to be a result of differences in performance variables provided by Microsoft for different 
types of systems. 

In sum: 
• of the 4 performance object variable groups demonstrating shifts in distributions in 

evaluation at ASU, 3 of those 4 object groups demonstrated similar shifts in 
distributions during evaluation at Symantec. 
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• of the 32 performance variables demonstrating shifts in averages in evaluation at 
ASU, 24 of those 32 performance variables demonstrated similar shifts in averages 
during evaluation at Symantec. 

In this regard, Symantec verified research outcomes regarding 3 of 4 performance 
variable object groups and 24 of 32 specific performance variables as generalizing across the 
different experimentation environments and different attacks between ASU and Symantec.  The 
remaining research outcomes could not be verified as generalizing, most likely due to differences 
in performance variables provided by Microsoft for different types of systems, or differences in 
interaction of the operating system with underlying hardware across different hardware 
platforms.  Most specifically, the research outcomes that differed all related to Terminal Services 
Session object variables, and the software provided to Symantec by Microsoft consistently did 
not capture Terminal Services Session data.  However, we see it as a positive result that 27 of 36 
research outcomes (3 of 4 object groups and 24 of 32 performance objects) did generalize across 
alternative hardware, operating systems, and attack sets, and that all non-verified outcomes 
might be a result of a single “common cause” of inconsistency of behavior of Microsoft software 
across versions and hardware platforms.  However, the false positive rate is not yet known for 
production deployment of any of the 27 possible indicators. 

 
7.6 Task 6 – Provide documents that reflect monthly status and final technical 
report. 

 
Symantec provided documents and e-mails reflecting monthly status.  Symantec is also 

providing this final technical report. 
 

7.7 Task 7 – Participate in project meetings as necessary. 
 
Symantec participated in project meetings as requested every quarter, either in person or 

via telecon.  Symantec also attended all three ARDA PI meetings. 
The following is a (partial) listing of quarterly team meetings and ARDA PI meetings 

attended in person or via telecon by Symantec representatives: 
• 11/19/2003 – 11/20/2003: ARDA PI Meeting in Nashville, TN; attended by Juanita 

Koilpillai 
• 2/3/2004 – 2/5/2004: Quarterly status meeting at ASU; attended by Juanita 

Koilpillai 
• 6/6/2004:  Quarterly status meeting via telecon; attended by Juanita 

Koilpillai and Matthew Elder 
• 6/22/2004 – 6/24/2004: ARDA PI Meeting in La Jolla, CA; attended by Matthew 

Elder 
• 8/10/2004: ARDA Site visit to ASU; attended by Matthew Elder 
• 12/1/2004: Quarterly status meeting at ASU; attended by Matthew 

Elder 
• 1/11/2005 – 1/13/2005: ARDA PI Meeting in Destin, FL; attended by Matthew 

Elder 
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7.8 Conclusion 
 
Symantec: 

• Collected and examined known cyber attack cases and scenarios to develop threat and 
attack profiles.  These attack cases included database attack cases and virus/worm 
attack cases. 

• Discovered characteristics of cyber signal and noise (attack data and normal data) at 
each observable point.  These characteristics included Pearson correlation percentages 
for attack data and normal data collected remotely and locally. 

• Investigated, developed, and tested sensor models of signal detection, and a sensor 
fusion model for each observable point.  These sensor models are stochastic models 
created by processing the query time series, and the fusion model investigated, 
developed, and tested was a Bayesian fusion model. 

• Formulated and solved an optimization problem to select an optimized suite of I&W 
observables / cyber sensors.  The optimized suite included delay regimes and unlikely 
columns utilized. 

• Tested and verified research outcomes using real information infrastructure data that 
is available at Symantec.  The real infrastructure data included virus and worm 
samples taken from real information infrastructure.  The outcomes tested and verified 
included shifts in distribution and averages of the Memory, Objects, Process, and 
Processor performance objects and variables. 

• Provided documents that reflect monthly status and this final technical report.  
Monthly status documents are included again in Appendix A for convenience. 

• Participated in project meetings as necessary, including ARDA PI meetings in 
November 2003, June 2004, and January 2005, and quarterly status meetings in 
February 2004, June 2004, August 2004, and December 2004. 

 
Moreover, towards verification of the fundamental hypothesis that a signal and noise 

detection and separation approach might be useful to cyber indications and warnings – the 
fundamental hypothesis underlying the ASU research effort and our subcontract – Symantec 
verified shifts in probability distribution of 3 performance object groups and shifts in averages of 
24 performance variables amongst phases of attacks, across platform differences and differences 
in attacks between ASU and Symantec. 

Additionally, in pursuing application of the ASU methodology to other attack classes 
manifesting themselves in other data streams, Symantec was able to identify 7 cyber sensors as 
an optimized suite useful in calculating the probability of attack. We consider each of these 7 
sensors and verification of each of these 27 performance object and variable research outcomes 
to each be a substantial finding. 

A logical next step, beyond the scope of this contract, might be evaluation of false-
positive rates and receiver operator characterization on larger and live production systems for 
each variable at multiple thresholds of deviation and each sensor along with the sensor fusion 
model.  However, as mentioned previously, and consistent with the direction of ASU, we 
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consider the 7 sensors and verification of 27 performance object and variables to be substantial 
findings.  Taken in the context of completion of all the tasks mentioned above, these results and 
this report then fulfill our responsibilities for the technical tasks of the subcontract. 
 
8. AT&T Final Report 
 

The Internet is a global, decentralized network comprised of many smaller interconnected 
networks. Networks are largely comprised of end systems, referred to as hosts, and intermediate 
systems, called routers. Information travels through a network on one of many paths, which are 
selected through a routing process. Routing protocols communicate reachability information 
(how to locate other hosts and routers) and ultimately perform path selection.  A network under 
the administrative control of a single organization is called an autonomous system (AS). The 
process of routing within an AS is called intradomain routing, and routing between ASes is 
called interdomain routing.  The dominant interdomain routing protocol on the Internet is the 
Border Gateway Protocol (BGP).  BGP has been deployed since the commercialization of the 
Internet, and version 4 of the protocol has been in wide use for over a decade. BGP works well in 
practice, and its simplicity and resilience have enabled it to play a fundamental role within the 
global Internet.  However, BGP has historically provided few performance or security 
guarantees. 

The limited guarantees provided by BGP often contribute to global instability and 
outages.  While many routing failures have limited impact and scope, others lead to significant 
and widespread damage. One such failure occurred on 25 April 1997, when a misconfigured 
router maintained by a small service provider in Virginia injected incorrect routing information 
into the global Internet and claimed to have optimal connectivity to all Internet destinations.  
Because such statements were not validated in any way, they were widely accepted. As a result, 
most Internet traffic was routed to this small ISP.  The traffic overwhelmed the misconfigured 
and intermediate routers, and effectively crippled the Internet for almost two hours. 

In this project, we aimed to provide solutions to BGP security through cybersignal 
detection. Our objective was first to characterize the types of attacks that can be made against 
BGP and the Internet routing fabric, and then to understand trends in the routing data that 
characterize BGP traffic and help differentiate attacks and other notable events from random 
noise in the system. We fulfilled the first seven objectives we faced prior to the end of our 
contract in September, 2004. 
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Figure 59. Number of unique paths per prefix. This is an indicator that paths in BGP are 

very dense, giving a good indication of how to detect signal accordingly. 
 
8.1 Deliverables 

 
We have identified a number of notable characteristics in the global BGP routing data. 

Using the publicly-accessible RouteViews repository of BGP data from over 40 routers located 
in autonomous systems around the world, we have created tools to effectively filter the data to 
expose interesting and important trends and identifying characteristics. Examining over 218 
million BGP UPDATE messages, we made discoveries as to the tail mass of BGP path vectors, 
and found the number of unique paths per advertised prefix and autonomous system are 
generally very dense and stable, as shown in Figure 59. Our inquiries into rate of discovery of 
new unique paths also uncovered a periodicity to the rate at which paths are added, implying that 
the global network is most stable on weekends. This is shown in Figure 60. 

 
8.1.1 Collect known attack cases and scenarios. 
 

We have thoroughly investigated the threats and attack scenarios against BGP, and have 
created a comprehensive list of current countermeasures against attacks.  Please see the next 
section for a full chart showing potential BGP attacks. Additionally, we have outlined a full 
threat model for BGP, a novel contribution to the research literature. Our work has been 
summarized in an AT&T technical report awaiting submission as a journal. Examples of attacks 
against BGP are numerous. Attacks against confidentiality are those where the channel over 
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which two parties communicate could be subverted by a third party through eavesdropping or 
other passive attacks, including those against the underlying TCP transport protocol (e.g., SYN 
flood, RST attack, sequence number guessing). Integrity attacks are those where the attacker 
does not merely scan the channel, but actively tampers with BGP messages. Message insertion, 
deletion, modification, and replay attacks are possible through these methodologies. Larger scale 
attacks include fraudulent advertisement of origin information and the subversion of path 
information. We have examined these attack vectors in great detail and have reported our 
findings in papers on origin and path authentication in interdomain routing, that have been 
accepted and submitted, respectively, to major networking and security conferences. 

Figure 60. Rate of Discovery: the number of new unique paths discovered aggregated by 
AS. This graph shows that for all listeners, there are relatively few new unique paths added 

on a daily or weekly basis, another good signaling indicator. 
 

8.1.2 Examine each attack scenario or case to derive the cause-effect network for the attack 
scenario. 
  

In our technical report, we identify the parties that are liable to initiate attack sequences 
and examine he effects that these attacks will have within individual autonomous systems, as 
well as potential effects on the global Internet as a whole. As an example of this, we consider the 
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denial of service attack on BGP speakers through the RST attack. A remote attacker spoofs a 
TCP RST message to a router’s connection with  a BGP peer, causing the router to lose its 
connection. The resulting effects are greater than the loss of two-party communication: because 
BGP requires distributed computation, if a router goes offline, then when it comes back online, 
its routing table will need to be recreated. As a result, it re-announces all of the prefixes it is 
originating, a process known as a table reset. The neighboring routers dump their BGP tables to 
the peer that has just come online so that it has full data for making its routing decisions. Sifting 
through this information places a considerable computational burden on the router, and delays 
processing of normal traffic. If the router is continually knocked offline, the routes it advertises 
will disappear and reappear in peer routing tables. This is called route flapping and is detrimental 
to all routers, as extra computation and reconfiguration of routes becomes necessary if this 
happens often. In order to lower the burden, unstable routes are often penalized through a 
process called route dampening.  Neighboring routers will ignore advertisements from the router 
for an increasing amount of time, depending on how often the route flapping occurs. We 
consider other attacks in our report that follow a similar cause-effect derivation. 

 
8.1.3 Examine the attack scenarios and cases to develop threat profiles. 
  

The comprehensive threat model that we have devised examines the potential attack 
scenarios and profiles the nature of each threat in order, based on empirical understanding on 
trends within the BGP data, as well as the results from previous academic contributions to the 
field and data from leading researchers within the networking community. We consider the 
ramifications of a dysfunctional routing system under attack. An individual router is subject to 
being overloaded with information, knocked offline or taken over by an attacker. An autonomous 
system can have its traffic black-holed or otherwise misrouted, and packets to or from it can be 
grossly delayed or dropped altogether. Malfunctioning ASes harm their peers by forcing them to 
recalculate routes and alter their routing tables. We have considered profiles of these attacks in 
our published and submitted papers. 

 
8.1.4 Develop attack profiles by enlarging the cause-effect network of each attack scenario 
with threat elements by putting the attack scenario under an applicable threat profile. 
  

The information that we collected and surveyed through the academic literature was 
collected and displayed as a chart showing a taxonomy of attacks, and further expanded upon in 
the survey we prepared that catalogued attacks and countermeasures. This table is given in the 
following section. 
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Figure 61. Number of signature validations required by scheme. Our schemes (Prefix, 

Origin AS, All AS) represent as much as a 97% decrease in validations over the S-BGP 
standard, thus making real-time path authentication possible due to the decrease in 

cryptographic computations required. 

 
8.1.5 Compare all the attack profiles and define classes of attack profiles. Prepare and 
deliver a technical report on attack profiles. Prepare and submit journal/conference 
paper(s) using materials from this technical report. 
  

Our literature survey provided comparisons of attacks against the BGP infrastructure 
from a variety of sources. The technical report we prepared is a comprehensive source for these 
attacks and potential solutions to these problems, as well as analysis as to the benefits and 
shortcomings of individual solutions [40]. This work has been expanded based on contributions 
from leading researchers in the field and will shortly be submitted to a major journal for 
consideration as a novel contribution to the research community, and particularly timely given 
the focus on BGP attacks. 
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8.1.6 Set up a testbed of the IC information infrastructure. 
  

We used the AT&T network to generate a very large corpus of experimental data for use 
in evaluating potential cybersignal solutions to network attacks. This data represents tens of 
millions of individual flows, and has been extensively formatted and filtered for use in 
experimentation. We have aggregated the data to show almost 8.5 million individual sessions, 
and this has given tremendous insight into the nature of transactional signaling.  

 
8.1.7 Simulate each attack profile on the testbed, and collect cyber signal data, including 
activity data, state change data, and performance impact data at candidate observable 
points throughout the cause-effect network of the attack profile. 
  

We tested and reported on statistical models derived from the ASU efforts on 
differentiating cyber signal and noise.  With the provided models and statistical software, we ran 
a series of tests over the breadth of experimental data on connection flows created from the 
AT&T research networks. The resulting information, based on multiple tests, was transferred to 
researchers at ASU for further analysis and evaluated for correlation with other results using 
cyber signal processing methods. Our own experiments, based on our data and cryptographic 
constructions we have derived, show that we can do real-time path authentication based on the 
computational savings our schemes provide. These schemes, if implemented by ASes, can 
prevent many of the attacks we outline against path modification and deletion. Please see Figure 
61, for further detail. The results of this work have been submitted to a major networking 
conference, where we expect it to have significant impact in the field. 
 
8.2 BGP Attack Classifications 
 
 Table 86 classifies some attacks on BGP. 
 

Table 86. Classification of BGP Attacks 

 Origin Attacks     
         

Attack Name 
Threat Agency Action Vulnerability Target State Effect 

Performanc
e Effect Notes 

Prefix hijacking - 
create a forged 
UPDATE claiming to 
be origin of some 
prefix 

Any Any Forgery Specification Data Availability, 
Integrity 

Timeliness, 
Accuracy 

This is the problem that origin authentication is 
really getting at. 

ATOMIC_AGGREGA
TE modification - can 
cause deaggregation 
of prefixes 

Any Any Spoof Specification Data Availability Accuracy 
The ATOMIC_AGGREGATE field is set by routers 
to prevent deaggregation of routes. By allowing 
deaggregation, incorrect routing of more specific 
prefixes within the aggregate can result. 
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UPDATE eavesdrop - 
read the update from 
the UPDATE stream. 

Any Any Read Specification Data Confidentialit
y None 

This is a hard one to nail down.  BGP UPDATES 
are generally considered public information 
(because they are flooded), but UPDATEs 
traversing private networks may be filtered or 
aggregated before being passed on. 

Policy  eavesdrop - 
read a policy in an 
UPDATE. 

Any Any Read Specification Data Confidentialit
y None 

BGP policy often is local to some community 
(hence the name community string), and is filtered 
in some cases.  Exposure of this information will 
tell the adversary something about the 
organizations and relationships in the network. 

Prefix Removal - 
remove a prefix 
advertisement from 
BGP UPDATE stream 

Any Any Delete Specification Data Availability Timeliness, 
Accuracy Cause prefix to be unavailable 

Modifying Withdrawn 
Routes field in 
UPDATE 

Any Any Spoof Specification System
, Data 

Availability, 
Integrity, 

Confidentialit
y 

Accuracy, 
Precision 

By modifying with Withdrawn Routes field, the 
attacker can eliminate legitimate routes from the 
routing table, and can repeatedly do so by 
replaying the attack. 

Whack-a-mole ASes - 
create a bogus AS 
using a unused AS 
number. 

Any Any Spoof Specification Data Availability, 
Integrity 

Timeliness, 
Accuracy 

Spammers use these when nobody else will 
transit their traffic.  These are particularly bad 
because they introduce a lot of noise into the 
global BGP update stream, and indirectly cause 
instability. 

AS impersonation - 
claim to be an AS you 
are not. 

Any Any Spoof Specification Data Availability, 
Integrity 

Timeliness, 
Accuracy, 
Precision 

This is really a problem because you only need to 
convince one AS (out of the currently 16,000) that 
you are the claimed AS. 

                  

 Path Attacks      
                  

Attack Name 
Threat 

Agenc
y Action Vulnerability Target State Effect 

Performanc
e Effect Notes 

Path Removal - 
remove a path from 
BGP UPDATE stream 

Any Any Delete Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

May cause suboptimal or incorrect route to be 
selected.  If used to mess with routing, then 
timeliness and accuracy are performance effects.  
If used to reroute toward controlled AS, could be 
used as confidentiality effect. 

Policy Removal - 
remove a policy from 
BGP UPDATE 
message 

Any Any Delete Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

May cause suboptimal or incorrect route to be 
selected.  If used to mess with routing, then 
timeliness and accuracy are performance effects.  
If used to reroute toward controlled AS, could be 
used as confidentiality effect. 

UPDATE removal - 
remove an update 
message from the 
UPDATE stream 

Any Any Delete Specification Data Availability 
Timeliness, 
Accuracy, 
Precision 

Can cause the path, prefix, policy removal 
behavior.  This can occur either at the BGP 
protocol or TCP layers. 

Modify Path – add, 
remove, modify hops 
in the BGP path 

Any Any Modify Specification Data 
Availability, 

Confidentialit
y 

Timeliness, 
Accuracy, 
Precision 

May cause suboptimal or incorrect route to be 
selected.  If used to mess with routing, then 
timeliness and accuracy are performance effects.  
If used to reroute toward controlled AS, could be 
used as confidentiality effect. 
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AS_PATH attribute 
modification - modify 
this field in the 
UPDATE message 

Any Any Modify Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

AS_PATH with an incorrect origin AS can play 
havoc with routing, causing blackholes. AS_PATH 
can be shortened, making the route appear more 
favourable to peers. 

NEXT_HOP atribute 
modification - can 
cause routing changes 

Any Any Modify Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

Changing the NEXT_HOP in conjunction with path 
modification can cause an attacking router to 
control and engineer traffic patterns. 

Modify Policy - 
change the policy such 
that the route becomes 
more or less desirable.  

Any Any Modify Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

May cause suboptimal or incorrect route to be 
selected.  If used to mess with routing, then 
timeliness and accuracy are performance effects.  
If used to reroute toward controlled AS, could be 
used as confidentiality effect. 

MULTI_EXIT_DISC 
modification can 
harm routing inside AS 

Any Any Modify Specification Data Availability Timeliness, 
Accuracy 

The multi exit discriminator (MED) is a way of 
determining which external link to progagate 
updates on, based on information from the peer. 
Modification of this can cause suboptimal routing 
within a peer AS. 

LOCAL_PREF 
modification can 
harm routing inside AS 

Any Any Modify Specification Data Availability Timeliness, 
Accuracy 

The local preference is a metric that helps 
determine which external link to prefer for given 
prefixes. Manipulation of this value can cause 
suboptimal routing within the affected AS. 

Path forgery - create 
a forged UPDATE with 
a bogus path for a 
known prefix. 

Any Any (Forgery
?) Specification Data Availability, 

Integrity 
Timeliness, 
Accuracy 

It really does not matter if the prefix is being 
advertised by some known AS.  Whack-a-mole 
Ases (see below) are really good for creating a 
stream of these. 

Modifying the NLRI 
field of the UPDATE 
message 

Any Any Spoof Specification Data 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy, 
Precision 

By changing the network layer reachability 
information in the UPDATE message, routing can 
be disrupted through the system, since the actual 
routing advertisements can be forged. 

                  

 Timing Attacks     
                  

Attack Name 
Threat 

Agenc
y Action Vulnerability Target State Effect 

Performanc
e Effect Notes 

Forged OPEN 
message during BGP 
session 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 

If the BGP speaker is in the Connect, Active or 
Established state, this message will force the 
connection to be closed, with the same effects as 
discussed above. 

Bogus OPEN 
connection when 
router is waiting to 
establish connection 

Any Any Spoof Specification System Availability Timeliness, 
Accuracy 

If the router is in the OpenSent state, an OPEN 
message will cause the connection to be 
confirmed. When the real router sends an OPEN, 
the connection will be closed because of 
connection collision. 

OPEN message 
arrives while 
OpenDelay timer in 
OpenSent state 

Any Any Terminatio
n 

Implementatio
n System Availability Timeliness, 

Accuracy 

The router should not be in the OPEN_SENT 
state if the DelayOpen timer is sent, but an 
implementation error with the finite state machine 
can cause this. An attacker familiar with the 
implementaion could bring down the connection 
this way. 

Sending KEEPALIVE 
when peering 
connection in Connect, 
Active or OpenSent 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 
In any of these states, the BGP speaker moves 
into the Idle state and will not establish a 
connection with the intended peer. 
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state   

TCP SYN forgery Any Any Spoof Implementatio
n System 

Availability, 
Integrity, 

Confidentialit
y 

Timeliness, 
Accuracy, 
Precision 

If the attacker sends a SYN to a BGP speaker, the 
real peer's SYN would look like a second 
connection. If the attacker keeps the connection 
alive by guessing the correct SYN ACK, a collision 
between the two connections could occur, 
dropping the legitimate connection as a result. 

SYN flooding Any Any 
Flood 

(Single 
Source) 

Implementatio
n System Availability Timeliness, 

Accuracy 

SYN floods are discussed in 
http://www.cert.org/advisories/CA-1996-21.html - 
by not responding to the SYN ACK, but opening a 
new TCP connection, the attacker can fill the 
buffer of available open connections to the router, 
preventing legitimate connections. 

TCP SYN ACK 
hijacking Any Any Spoof Implementatio

n System 
Availability, 

Integrity, 
Confidentialit

y 

Timeliness, 
Accuracy 

By responding to a SYN set up during a legitimate 
connection between two BGP peers, an attacker 
can send a SYN-ACK. If timed correctly, the 
legitimate peer's SYN-ACK will cause the TCP 
connection to be terminated, which brings down 
the BGP session in the process. 

Altering BGP Timers Any Any Spoof Implementatio
n System Availability, 

Integrity 
Timeliness, 
Accuracy, 
Precision 

Gaining control of the router could allow the 
attacker to modify the KeepAlive, Hold, or 
OpenDelay timers, causing peers to consider the 
connection unresponsive and terminate it.  

                  

 Availability Attacks     
                  

Attack Name 
Threat 

Agenc
y Action Vulnerability Target State Effect 

Performanc
e Effect Notes 

Route Flooding - 
flood a BGP speaker 
with more UPDATEs 
than it can handle. 

Any Any 
Flood 

(Single 
Source) 

Specification System Availability Timeliness 
This occurs naturally by table resets, and can be 
caused by forged TCP RST packets, or by forged 
BGP session termination messages. 

Speaker death - shut 
down (process layer) 
or isolate (network 
wise) the BGP speak 
such that the BGP 
session closes. 

Any Any Terminatio
n Specification System Availability Accuracy 

This  can be caused by forged TCP RST packets, 
or by forged BGP session termination messages.  
If the speaker comes back, this can cause 
flooding (both locally and globally). 

Syntax error in 
message header - will 
close a BGP 
connection 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 

Syntax errors cause the BGP speaker to close the 
connection and delete all routes associated with 
the connection, causing the router to reprocess 
information to determine how to now route those 
prefixes. This can cause a cascade effect with 
connected peers resetting their routes as well. 

Syntax error in OPEN 
message will close 
connection 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 
OPEN message syntax errors, such as errors in 
paramters or unsupported version numbers, will 
close a connection. 
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Receiving 
NOTIFICATION 
message brings down 
connection 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 

Receiving NOTIFICATION message will cause 
BGP speaker to bring down the connection, and 
release and recalculate routes. This can cascade 
through to other routers. 

Modifying Unfeasible 
Routes Length, Total 
Path Attribute Length 
attributes in UPDATE 
message 

Any Any Terminatio
n Specification System

, Data 
Availability, 

Integrity 
Timeliness, 
Accuracy 

Modifying these parts of the UPDATE message 
will cause a NOTIFICATION message to be sent, 
terminating the connection. 

Incorrect 
modification of Path 
Attributes can cause 
session failure 

Any Any Terminatio
n Specification System

, Data 
Availability, 

Integrity 
Timeliness, 
Accuracy 

If the attributes are incorrectly modified, a parse 
error will occur, resulting in a NOTIFICATION 
message being sent and the connection being 
terminated. 

Malformed UPDATE 
message will close 
connection 

Any Any Terminatio
n Specification System Availability Timeliness, 

Accuracy 

Sending an UPDATE message that contains 
errors will bring down the connection with the peer 
and cause all routes learned to be deleted and 
require recalculation. This can cascade to other 
routers. 

TCP RST/FIN attack Any Any Spoof Implementatio
n System Availability Timeliness, 

Accuracy 

Spoofing a TCP RST by guessing the correct 
sequence number will cause a TCP (and therefore 
BGP) connection to terminate. The attack works 
against the FIN as well, but there would be 
notification that the connection was closing. 

Forcing manual reset 
of router Any Any Terminatio

n 
Implementatio

n System Availability Timeliness, 
Accuracy 

Gaining control of the router through an attack like 
the SNMP buffer overflow exploit (eg. 
http://www.securityfocus.com/bid/1901) could 
allow the attacker to remotely shut down the 
router. 

Link Cutting -
hampering connectivity 
through making the 
network link 
inaccessible 

Spies, 
Terrorists, 
Profession

al 
Criminals, 
Industrial 

Espionage 

Any Terminatio
n 

Implementatio
n System Availability Timeliness, 

Accuracy 

Described in 
http://www.research.att.com/~smb/papers/reroute.
pdf, link cutting can take the form of the backhoe 
attack, ping of death or DoS of a given link. If the 
attacker knows the network topology, he or she 
can force packets to go through the paths they 
want through this attack. 

Physical destruction 
of router 

Spies, 
Terrorists, 
Profession

al 
Criminals 

Human Terminatio
n 

Implementatio
n System Availability Timeliness, 

Accuracy 

Physically disabling the router by destroying the 
interfaces or the machine itself is a possible 
attack. Physical sercurity of important network 
elements is always critical. 

MD5 authentication 
attack Any Any Authenti-

cate 
Implementatio

n System 
Availability, 

Integrity, 
Confidentialit

y 
Accuracy 

While MD5 protection between peers can mitigate 
many of the above threats, attacking the 
authentication could yield ways to attack the 
protocol.Brute force and hash collision attacks are 
possible. 
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9. Conclusion 
 In this report, we consolidate our research/reporting for the duration of this project. We 
also include final project reports from our subcontractors. The first subcontractor, Symantec, was 
involved throughout the duration of the project. The second subcontractor, AT&T, was involved 
in the project until September 2004, at which time the PI for that subcontract left AT&T and the 
contract between ASU and AT&T terminated. 
 In addition to required reporting, we have produced several journal papers and one thesis 
on this research, which are referenced in each of the respective subsections of this final report. 
The final technical report and papers represent a summary of our major findings in as much as 
the scope of such research dissemination allows. We have exhibited the feasibility of our 
approach to cyber attack recognition, and additionally provided results to highlight the potential 
benefits of this work. 
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List of Acronyms 
ACF  Autocorrelation Function 
ANOVA Analysis of Variance 
AR  Autoregressive Model 
ARDA  Advanced Research and Development Activity 
ARIMA Autoregressive Integrated Moving Average 
ARMA Autoregressive Moving Average 
ARP  Address Resolution Protocol 
AS  Autonomous System 
ASU  Arizona State University 
BGP  Border Gateway Protocol 
CPU  Central Processing Unit 
CSR  Customer Service Representative 
DB  Database 
DFC  Data, Feature and Characteristic 
DNS  Domain Name Service 
DOG  Derivative of Gaussian 
DOS  Denial of Service 
DW  Data Warehouse 
EWMA Estimated Weighted Moving Average 
FSM  Finite State Model 
FTP  File Transfer Protocol 
GLM  Generalized Linear Model 
GLS  Generalized Least Square 
GP  General Purpose 
HSA  Human Security Administrator 
I&W  Indications and Warning 
IC  Intelligence Community 
ICA  Independent Component Analysis 
IMA  Integrated Moving Average 
IP  Internet Protocol 
KS  Kolmogorov-Smirnov 
MC  Multiple Correlation Coefficient 
MED  Multi Exit Discriminator 
OLS  Least Square Model 
OLTP  Online Transaction Processing 
PC  Principle Component 
PCA  Principal Component Analysis 
PLS  Partial Least Square 
SFR  System Fault Risk 
SMB  Server Message Block 
SPC  Statistical Process Control 
SPRT  Sequential Probability Ratio Test 
SQL  Structured Query Language 


